精英家教网 > 高中数学 > 题目详情

【题目】(题文)从某校高一年级随机抽取名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:

组号

分组

频数

频率

Ⅰ)求的值.

Ⅱ)若,补全表中数据,并绘制频率分布直方图.

Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为,求的值,并由此估计该校高一学生的日平均睡眠时间不少于小时的概率.

【答案】(1)50(2)见解析(3)0.46

【解析】试题分析:(I)在1组中,频数为2,频率为004,可求得值;()当时,根据随机抽样时等概率的特点可以补全表格中数据,然后根据表格中的数据绘制频率分布直方图;()根据样本数据的平均值为784,样本容量为50,列出关于的方程组解出,然后将[89)和[910)两组的频数作和,然后除以样本容量得出所求概率;

试题解析:(I

II)补全数据见下表;

组号

分组

频数

频率

1

[56

2

004

2

[67

10

020

3

[78

10

020

4

[89

20

040

5

[910

8

016

频率分布直方图见下图:

III)依题意得解得

该校高一学生的日平均睡眠时间不少于8小时为事件,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 ,且满足.

(1)求点的轨迹方程所代表的曲线

(2)若点 是曲线上的动点,点在直线上,且满足 ,当点上运动时,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知被直线 分成面积相等的四个部分,且截轴所得线段的长为2. 

(1)求的方程;

(2)若存在过点的直线与相交于 两点,且点恰好是线段的中点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为正实数

(1)若函数处的切线斜率为2的值

(2)求函数的单调区间

(3)若函数有两个极值点求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列具有性质;对任意两数中至少有一个是该数列中的一项,给出下列三个结论:

①数列具有性质

②若数列具有性质,则

③若数列具有性质,则

其中,正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为是等比数列,.

(1)求数列的通项公式;

(2)求数列的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在区间[0,1]上存在零点,求实数的取值范围;

(2)当时,若对任意∈[0,4],总存在∈[0,4],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面为等边三角形, 上的点,且.

(1)求和平面所成角的正弦值;

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

同步练习册答案