精英家教网 > 高中数学 > 题目详情
不等式|2x-1|-|x|≥1的解集是
 
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
解答: 解:由不等式|2x-1|-|x|≥1可得
x<0
-x≥0
①,或
0≤x<
1
2
-3x≥0
 ②,或
x≥
1
2
x≥0
 ③.
解①求得 x<0,解②求得x=0,解③求得x≥
1
2

综上可得,原不等式的解集为{x|x≤0,或x≥2},
故答案为:{x|x≥2或x≤0}.
点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某人在早上6:30-7:30之间把报纸送到你家,而你离开家去上学的时间在早上7:00-8:00之间,那么你离开家前能得到报纸的概率是(  )
A、
1
4
B、
3
4
C、
1
8
D、
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

正项等比数列{an}中,a1=2,且a2,a1+a2,a3成等差数列.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 设bn=(1-
2
an
)2+a(1+
1
an
)
(n∈N*),若a∈[0,2],求数列{bn}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-2y2=1的离心率是(  )
A、
3
B、
3
2
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x2+ax-a-1)(a∈R),给出下列命题:①f(x)有最小值;②当a=0时,f(x)的值域为R;③a=1时,f(x)的定义域为(-1,0);④若f(x)在区间[2,+∞)上是增函数,则实数a的取值范围是[-4,+∞).其中正确结论的序号是
 
.(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
f(x+3)
,当1≤x<3时,f(x)=(
1
2
x,则f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图(算法流程图)的输出结果
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(-
1
2
3
2
),其中α是锐角.
(Ⅰ)当α=30°时,求|
a
+
b
|;
(Ⅱ)证明:向量
a
+
b
a
-
b
垂直;
(Ⅲ)若向量
a
b
夹角为60°,求角α.

查看答案和解析>>

同步练习册答案