精英家教网 > 高中数学 > 题目详情
7.若集合A={x|x2-9x<0},B={x|1<2x<8},则集合A∩B=(0,3).

分析 化简集合A、B,根据交集的定义写出集合A∩B即可.

解答 解:集合A={x|x2-9x<0}={x|0<x<9},
B={x|1<2x<8}={x|0<x<3},
则集合A∩B={x|0<x<3}.
故答案为:(0,3).

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,P是椭圆上任意一点,且|PF1|+|PF2|=2$\sqrt{2}$,它的焦距为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在正实数t,使直线x-y+t=0与椭圆C交于不同的两点A,B,且线段AB的中点在圆x2+y2=$\frac{5}{6}$上,若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图:记成绩不低于70分者为“成绩优良”.

(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并大致判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
甲班乙班总计
成绩优良
成绩不优良
总计
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
独立性检验临界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知log35=a,log37=b,则log1535可用a,b表示为$\frac{a+b}{1+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若U=R,集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x2-1)的定义域,则图中阴影部分对应的集合为(  )
A.(-1,1)B.[-1,1]C.[1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=blnx.
(Ⅰ)当b=1时,若函数F(x)=f(x)+ax2-x在其定义域上为增函数,求a的取值范围;
(Ⅱ)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1所示,在四边形ABCD中,AD∥BC,AD=AB=1,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD(如图2)
(1)求证:平面ADC⊥平面ABC;
(2)求三棱锥D-ABC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\frac{1}{{{e^{|x|}}}}-{x^2}$,若$f({3^{a-1}})>f(-\frac{1}{9})$,则实数a的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列命题中不正确的是(  )
A.若 m∥n,m⊥α,n⊥β,则α∥βB.若m∥α,α∩β=n,则m∥n
C.若m⊥α,α∥β,则m⊥βD.若m⊥α,n⊥β,m⊥n,则α⊥β

查看答案和解析>>

同步练习册答案