精英家教网 > 高中数学 > 题目详情
19.一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为8.

分析 根据频率=$\frac{频数}{数据总和}$求得第5组的频数,则即可求得第6组的频数.

解答 解:第5组的频数为40×0.1=4;
∴第6组的频数为40-(10+5+7+6+4)=8.
故答案为:8.

点评 本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系频率=$\frac{频数}{数据总和}$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-alnx.
(1)当a=3,求f(x)的单调递增区间;
(2)若函数g(x)=f(x)-9x在区间$[\frac{1}{2},2]$上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某商品的销售量y(件)与销售价格x(元/件)存在线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为$\widehat{y}$=-10x+200,则下列结论正确的是(  )
A.y与x成正线性相关关系
B.当商品销售价格提高1元时,商品的销售量减少200件
C.当销售价格为10元/件时,销售量为100件
D.当销售价格为10元/件时,销售量为100件左右

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=5cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数),则过点(3,0)且斜率为$\frac{4}{5}$的直线l被曲线C截得的线段中点的坐标为(  )
A.(-$\frac{3}{2}$,-$\frac{18}{5}$)B.($\frac{4}{3}$,-$\frac{4}{3}$)C.(-2,-4)D.($\frac{3}{2}$,-$\frac{6}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{ln(x+1),x>0}\\{\frac{1}{2}x+1,x≤0}\end{array}\right.$,若m<n,且f(m)=f(n),试写出 m-n关于n的函数关系式,并指出该函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x)满足f(x+4)=f(x),且当0≤x≤2时,f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有两个根,则m的取值范围是(  )
A.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.[-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2)D.[-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=cos(\sqrt{3}x+ϕ)$,若y=f(x)+f'(x)是偶函数,则ϕ=-$\frac{π}{3}$+kπ,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个无穷数列的前三项是1,2,3,下列不可以作为其通项公式的是(  )
A.an=nB.an=n3-6n2+12n-6C.an=$\frac{1}{2}$n2-$\frac{1}{2}$n+1D.an=$\frac{6}{{n}^{2}-6n+11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1)数列{an}满足关系anan+1=1-an+1(n∈N*),且a2010=2,则a2008=-3.
(2)数列{an}中,a1=1,an+1=2an+1,则{an}的通项公式为2n-1.

查看答案和解析>>

同步练习册答案