精英家教网 > 高中数学 > 题目详情
二项式(2x+
x
)4
的展开式中含x3项系数为
 
考点:二项式定理
专题:二项式定理
分析:先求得二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得含x3项的系数.
解答: 解:二项式(2x+
x
)4
的展开式的通项公式为Tr+1=
C
r
4
•24-rx4-
r
2

令4-
r
2
=3,求得r=2,故开式中含x3项系数为
C
2
4
•22=24,
故答案为:24.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P:
x2
1-2m
+
y2
m+2
=1表示双曲线,q:函数g(x)=3x2+2mx+m+
4
3
有两个不同的零点.
(1)若p为假命题,求实数m的取值范围,
(2)若p∧q,为假命题,pⅤq为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=2x+r(r为常数)的图象上.(Ⅰ)求an和r的值;
(Ⅱ)记  bn=
n
an+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足an+2Sn•Sn-1=0(n≥2,且n∈N),a1=
1
2

(1)求证:{
1
Sn
}是等差数列;
(2)若bn=Sn•Sn+1,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

有限数列A={a1,a2,…,an}的前n项和为Sn,定义
S1+S2+…+Sn
n
为A的“凯森和”,若数列{a1,a2,…,a99}的“凯森和”为1000,则数列{1,a1,a2,…,a99}的“凯森和”为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(-4,3),
(1)求
sin(π-α)+cos(-α)
tan(π+α)
的值;      
(2)求sinαcosα+cos2α-sin2α+1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

列命题:①“?实数a,使
a
为正整数”;②命题“若a>1,则不等式ax2-2ax+a+3>0的解集为R”的否定;③“若a2<b2,则a<b”的逆命题;④函数f(x)=ex-2,的零点落在区间(0,1)内.其中正确的命题个数是(  )
A、①④B、①③C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设x0是方程10-x=lnx的解,且x0∈(k,k+1)(k∈Z,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别为a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;  
(2)设函数f(x)=sinωx-
3
cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案