精英家教网 > 高中数学 > 题目详情
17.已知函数y=f(2x+1)定义域是[-1,0],则y=f(x+1)的定义域是(  )
A.[-1,1]B.[0,2]C.[-2,0]D.[-2,2]

分析 由函数f(2x+1)的定义域是[-1,0],求出函数f(x)的定义域,再由x+1在函数f(x)的定义域内求解x的取值集合得到函数y=f(x+1)的定义域,.

解答 解:由函数f(2x+1)的定义域是[-1,0],得-1≤x≤0.
∴-1≤2x+1≤1,即函数f(x)的定义域是[-1,1],
再由-1≤x+1≤1,得:-2≤x≤0.
∴函数y=f(x+1)的定义域是[-2,0].
故选:C.

点评 本题考查了复合函数定义域的求法,给出函数f[g(x)]的定义域[a,b],求函数f(x)的定义域,就是求x∈[a,b]内的g(x)的值域;给出函数f(x)的定义域为[a,b],求f[g(x)]的定义域,只需由a≤g(x)≤b,求解x的取值集合即可,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设x,y∈R,a>1,b>1,若ax=by=2,a+b=4,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,AB=$\sqrt{3}$,AC=1,∠B=30°,△ABC的面积为$\frac{\sqrt{3}}{2}$,则∠C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>D)的离心率为$\frac{\sqrt{3}}{3}$,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在点P,使得当l绕P转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m(m>0)与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),(x>0)}\\{{2}^{-x}-1,(x≤0)}\end{array}\right.$,则f[f(-1)]=1;若f(x0)<1,则x0的取值范围是-1≤x0<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=ex+4x-3的零点所在的区间为(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=mx2-2x+3在[-2,+∞)上递减,则实数m的取值范围[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Acos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,其中M,P分别是函数f(x)的图象与坐标轴的交点,N是函数f(x)的图象的一个最低点,若点N,P的横坐标分别为$\frac{5π}{8}$,$\frac{11π}{8}$,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2$\sqrt{2}$,则下列说法正确的个数为(  )
①A=±2;
②函数f(x)在[$\frac{9π}{4}$,$\frac{21π}{8}$]上单调递减;
③要得到函数f(x)的图象,只需将函数y=4sinxcosx的图象向左平移$\frac{π}{8}$个单位.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案