精英家教网 > 高中数学 > 题目详情
16.如果指数函数y=ax(a>0且a≠1)在x∈[0,1]上的最大值与最小值的和为$\frac{5}{2}$,则实数a=$\frac{3}{2}$.

分析 由已知中指数函数y=ax在[0,1]上的最大值与最小值的和为$\frac{5}{2}$,根据指数函数一定为单调函数,则最大值与最小值的和一定等于a+1,由此构造方程,解方程即可得到答案.

解答 解:若a>1,则指数函数y=ax在[0,1]上单调递增;
则指数函数y=ax在[0,1]上的最小值与最大值分别为1和a,
又∵指数函数y=ax在[0,1]上的最大值与最小值的和为$\frac{5}{2}$,
则a+1=$\frac{5}{2}$,解得a=$\frac{3}{2}$;
若0<a<1,则指数函数y=ax在[0,1]上单调递减;
则指数函数y=ax在[0,1]上的最大值与最小值分别为1和a,
又∵指数函数y=ax在[0,1]上的最大值与最小值的和为$\frac{5}{2}$,
则a+1=$\frac{5}{2}$,解得a=$\frac{3}{2}$(舍去).
故答案为:$\frac{3}{2}$.

点评 本题考查的知识点是指数函数的单调性,其中根据指数函数一定为单调函数,则最大值与最小值的和一定等于a+1,并构造出关于a的方程,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某化工厂生产一种化工产品,据负责该产品生产的部门预算,当该产品年产量在50吨至300吨之间时,其生产的总成本y(万元)与年产量x(吨)之间的部分对应数据大致如下表:
生产量x(单位:吨)50100130180200250300
生产总成本y(单位:万元)2750200017501800205027504050
(1)给出如下四个函数:
①y=ax2+b,②y=$\frac{1}{10}{x}^{2}+ax+b$,③y=a•bx,④y=a•logbx.根据上表数据,从上述四个函数中选取一个最恰当的函数描述y与x的变化关系,并通过表中前两组数据,求出y与x的函数解析式;
(2)根据你求出的函数解析式,试问当年产量为多少吨时,生产每吨的平均成本最低?每吨的最低成本是多少?
(3)若将每吨产品的出厂价定为16万元,则年产量为多少吨时,方可使得全年的利润最大?并求出全年的最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.读程序

对甲乙两程序和输出结果判断正确的是(  )
A.程序不同,结果不同B.程序相同,结果不同
C.程序不同,结果相同D.程序相同,结果相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a,b,c分别为角A,B,C的对边,已知A=$\frac{π}{4}$,a=$\sqrt{3}$.
(1)若sinB=$\frac{3}{5}$,求边c的长;
(2)若|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=$\sqrt{6}$,求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=$(1+x)^{\frac{x}{tan(x-\frac{π}{4})}}$在(0,2π)内的间断点,并判断其类型.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若集合A=(-∞,m],B={x|-2<x≤2},且B⊆A,则实数m的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{-2,x∈(-∞,-2)}\\{x+3,x∈[-2,2)}\\{3,x∈[2,+∞)}\end{array}\right.$试作出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\sqrt{2+2sin(2π-θ)-co{s}^{2}(π+θ)}$可化简为1-sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若全称命题p:“对?x∈(1,3),x2-2ax-1≤0”为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案