分析 由已知及正弦定理可得sinA的值,利用AB>BC,可得A<C,利用正弦函数的图象和性质即可求得A的值.
解答 解:∵AB=$\sqrt{6}$+$\sqrt{2}$,BC=2$\sqrt{3}$,∠C=75°,
∴由正弦定理可得:sinA=$\frac{BCsinC}{AB}$=$\frac{2\sqrt{3}×sin75°}{\sqrt{6}+\sqrt{2}}$=$\frac{2\sqrt{3}×\frac{\sqrt{6}+\sqrt{2}}{4}}{\sqrt{6}+\sqrt{2}}$=$\frac{\sqrt{3}}{2}$.
∵AB=$\sqrt{6}$+$\sqrt{2}$>BC=2$\sqrt{3}$,A<C,A∈(0,75°),
∴A=60°.
故答案为:60°.
点评 本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,3) | B. | (-∞,-1)∪(3,+∞) | C. | (-3,1) | D. | (-∞,-3)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{π}{3}$ | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com