精英家教网 > 高中数学 > 题目详情

【题目】给出以下命题,其中真命题的个数是( )

①若“”是假命题,则“”是真命题;

②命题“若,则”为真命题;

③已知空间任意一点和不共线的三点,若,则四点共面;

④直线与双曲线交于两点,若,则这样的直线有3条;

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】(1)若是假命题,则是假命题p是真命题,是假命题是真命题,故真命题,选项正确.

(2) 命题,则的逆否命题是若a=2,b=3,a+b=5.这个命题是真命题,故原命题也是真命题.

(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,

(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,

双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,

当直线与双曲线左右两支各有一个交点时,当k=02a=4,

则满足|AB|=5的直线有2条,当直线与实轴垂直时,

x=c=3时,得,即=,即则y=±

此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,

故答案为:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北京市某年11月1日—20日监测最高最低温度及差值数据如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

最高温度(℃)

20

16

14

20

20

20

18

15

12

11

12

12

13

9

8

6

13

11

10

14

最低温度(℃)

5

4

2

4

9

6

9

3

-1

0

5

1

4

-1

-4

-2

-1

0

1

3

差值(℃)

15

12

12

16

11

14

9

12

13

11

7

11

9

10

12

8

14

11

9

11

(Ⅰ)完成下面的频率分布表及频率分布直方图,并写出频率分布直方图中的值;

(Ⅱ)从日温差大于等于的这些天中,随机选取2天.求这两天中至少有一天的温差在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数

无零点,求实数k的取值范围;

有两个相异零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[100,110),[110,120),[120,130)三组内的学生中,用分层抽样的方法选取28人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在去年的足球甲联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )

①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(ax+ )+
(1)若a>0,且f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)在(0,+∞)上的最小值为1?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)﹣f(x)=xex , 且f(0)= ,则 的最大值为(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出一个问题的算法:

S1 输入x;

S2 x≤2,则执行S3;否则,执行S4;

S3 输出-2x-1;

S4 输出x2-6x+3.

问题:

(1)这个算法解决的是什么问题?

(2)当输入的x值为多大时,输出的数值最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,则BD的长为

查看答案和解析>>

同步练习册答案