精英家教网 > 高中数学 > 题目详情

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

(1)极大值为(2)

解析试题分析:(1)先求导,根据时有极值,则,可求得的值。代入导数解析式并整理,令导数大于0可得增区间,令导数小于0可得减区间。根据单调性可求极值。(2)在定义域上是增函数,则当恒成立。因为,且,所以只需,即恒成立。可用基本不等式求的最大值则
(1)∵时有极值,∴有
 ∴, ∴        2分
∴有

∴由

在区间上递增,在区间上递减     5分
的极大值为     6分
(2)若在定义域上是增函数,则时恒成立

恒成立,           9分
恒成立,
为所求。          12分
考点:用导数研究函数的单调性和极值、最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,)处的切线方程
(1)求函数的解析式;   
(2)求函数的图像有三个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)若函数f(x)在R上单调递增,求实数a的取值范围;
(2)若函数f(x)在区间(-1,1)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,长度为3的线段AB的端点A、B分别在轴上滑动,点M在线段AB上,且,
(1)若点M的轨迹为曲线C,求其方程;
(2)过点的直线与曲线C交于不同两点E、F,N是曲线上不同于E、F的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的单调区间;
(2)若f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取极值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,证明:
(2)若,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若曲线在点处与直线相切,求a,b的值;
(2)求函数的单调区间.

查看答案和解析>>

同步练习册答案