【题目】如图,四棱锥中,,,为的中点.
(1)求证:平面;
(2)在线段上是否存在一点,使得平面平面?若存在,证明你的结论,若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知直线为参数),以坐标原点为极点,轴为极轴建立极坐标系,曲线.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)求与直线平行,且被曲线截得的弦长为的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在菱形中,且,点分别是棱的中点,将四边形沿着转动,使得与重合,形成如图所示多面体,分别取的中点.
(Ⅰ)求证:平面;
(Ⅱ)若平面平面,求与平面所成的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相宰相西萨班达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经销商第一年购买某工厂商品的单价为(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:
上一年度 销售额/万元 | ||||||
商品单价/元 |
为了研究该商品购买单价的情况,为此调查并整理了个经销商一年的销售额,得到下面的柱状图.
已知某经销商下一年购买该商品的单价为(单位:元),且以经销商在各段销售额的频率作为概率.
(1)求的平均估计值.
(2)为了鼓励经销商提高销售额,计划确定一个合理的年度销售额(单位:万元),年销售额超过的可以获得红包奖励,该工厂希望使的经销商获得红包,估计的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具厂生产一种办公桌,每张办公桌的成本为100元,出厂单价为160元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部办公桌出厂单价降低1元.根据市场调查,销售商一次订购量不会超过160张.
(1)设一次订购量为张,办公桌的实际出厂单价为元,求关于的函数关系式;
(2)当一次性订购量为多少时,该家具厂这次销售办公桌所获得的利润最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等边三角形的中线与中位线相交于,已知是绕旋转过程中的一个图形,下列命题中,错误的是
A. 恒有⊥
B. 异面直线与不可能垂直
C. 恒有平面⊥平面
D. 动点在平面上的射影在线段上
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com