【题目】已知圆C的圆心为原点,且与直线 相切.
(1)求圆C的方程;
(2)点在直线上,过点引圆C的两条切线, ,切点为, ,求证:直线恒过定点.
【答案】解:(1)依题意得:圆的半径,所以圆的方程为。(4分)
(2)是圆的两条切线, 。在以为直径的圆上。
设点的坐标为,则线段的中点坐标为。
以为直径的圆方程为(8分)
化简得: 为两圆的公共弦,
直线的方程为
所以直线恒过定点。(12分)
【解析】试题分析:(1)由圆C与直线相切,得到圆心到直线的距离d=r,故利用点到直线的距离公式求出d的值,即为圆C的半径,又圆心为原点,写出圆C的方程即可;
(2)由PA,PB为圆O的两条切线,根据切线的性质得到OA与AP垂直,OB与PB垂直,根据90°圆周角所对的弦为直径可得A,B在以OP为直径的圆上,设出P的坐标为(8,b),由P和O的坐标,利用线段中点坐标公式求出OP中点坐标,即为以OP为直径的圆的圆心坐标,利用两点间的距离公式求出OP的长,即为半径,写出以OP为直径的圆方程,整理后,由AB为两圆的公共弦,两圆方程相减消去平方项,得到弦AB所在直线的方程,可得出此直线方程过(2,0),得证.
解:(1)依题意得:圆心(0,0)到直线的距离d=r,
∴d=,
所以圆C的方程为x2+y2=16①;
(2)连接OA,OB,
∵PA,PB是圆C的两条切线,
∴OA⊥AP,OB⊥BP,
∴A,B在以OP为直径的圆上,
设点P的坐标为(8,b),b∈R,
则线段OP的中点坐标为,
∴以OP为直径的圆方程为,
化简得:x2+y2﹣8x﹣by=0②,b∈R,
∵AB为两圆的公共弦,
∴①﹣②得:直线AB的方程为8x+by=16,b∈R,即8(x﹣2)+by=0,
则直线AB恒过定点(2,0).
科目:高中数学 来源: 题型:
【题目】我们知道,如果集合AS,那么S的子集A的补集为SA={x|x∈S,且xA}.类似地,对于集合A、B,我们把集合{x|x∈A,且xB}叫作集合A与B的差集,记作A-B.据此回答下列问题:
(1)若A={1,2,3,4},B={3,4,5,6},求A-B;
(2)在下列各图中用阴影表示集合A-B.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1处有极值10,求a,b的值;
(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a是实数,函数f(x)= (x-a).
(1)求函数f(x)的单调区间;
(2)设g(a)为f(x)在区间[0,2]上的最小值.
①写出g(a)的表达式;
②求a的取值范围,使得-6≤g(a)≤-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+x2+x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是解决数学问题的思维过程的流程图:
在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )
A. ①—分析法,②—反证法 B. ①—分析法,②—综合法
C. ①—综合法,②—反证法 D. ①—综合法,②—分析法
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同
(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,七个白球的概率;
(2)采用放回抽样,每次随机抽取一球,连续取3次,求至少有1次取到红球的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com