精英家教网 > 高中数学 > 题目详情

【题目】某美术学院2018年在山西招生,报名人数很多.工作人员在某个市区抽取了该区2018年美术招生考试成绩中200名学生的色彩和素描的初试成绩,按成绩分组,得到的频率分布表如下图所示.

组号

分组

频数

频率

1

24

0.12

2

0.18

3

64

0.32

4

60

5

16

0.08

合计

200

1.00

1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图,并由频率分布直方图估算中位数;

2)为了能更清楚地了解该市学生的情况,该美院决定在复试以前先进行抽样调研.但受场地和教授人数的客观限制,决定从第3组选出3人,第4组选出2人,第5组选出1人,然后从这6人中再选出2人进行调研,求这2人均来自第三组的概率.

【答案】1)①处填36,②处填0.30,作图见解析,中位数为173.1252

【解析】

1)由各个区间的数据和为总数分别求出①和②处的数据,根据频率和组距画出频率分布直方图,利用中位数左边和右边的直方图面积相等即可求得中位数;

2)列举人中随机抽取人的总的基本事件数,再列举出这人均来自第三组的基本事件数,利用古典概型公式即可求得结果.

1)由题意,①处的数据为

②处的数据为

①处填,②处填

频率分布直方图如下,

由图知,前两个组的频率和为,前三个组的频率和为.

∴中位数在第组中,设为

,解得

∴中位数为

2)在选出的人中,第组的人记为,第组的人记为,第组的人记为.

则抽取人所有可能结果为

,共种,

选出的人均来自第

事件的所有可能结果为种,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5/千克时,每日可售出该商品11千克.

(1) 的值;

(2) 若商品的成品为3/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中.

1)讨论函数的单调性;

2)函数处存在极值-1,且时,恒成立,求实数的最大整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中的“蒲莞生长”是一道名题根据该问题我们改编一题:今有蒲草第一天长为三尺,莞草第一天长为一尺,以后蒲草的生长长度遂天减半,莞草的生长长度逐天加倍,现问几天后莞草的长度是蒲草的长度的两倍,以下给出了问题的四个解,其精确度最高的是(结果保留一位小数,参考数据:lg2≈0.30lg3≈0.48)(

A.2.6B.3.0C.3.6D.4.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水产养殖户在鱼成熟时,随机从网箱中捕捞100尾鱼,其质量分别在[44.5),[4.5.5),[5.5.5),[5.56),[66.5),[6.57](单位:斤)中,经统计得频率分布直方图如图所示

1)现按分层抽样的方法,从质量为[4.55),[55.5)的鱼中随机抽取5尾,再从这5尾中随机抽取2尾,记随机变量X表示质量在[4.55)内的鱼的尾数,求X的分布列及数学期望.

2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,该养殖户还未捕捞的鱼大约还有1000尾,现有两个方案:

方案一:所有剩余的鱼现在卖出,质量低于5.5斤的鱼售价为每斤10元,质量高于5.5斤的鱼售价为每斤12

方案二:一周后所有剩余的鱼逢节日卖出,假设每尾鱼的质量不变,鱼的数目不变,质量低于5.5斤的鱼售价为每斤15元,这类鱼养殖一周的费用是平均每尾22元;质量高于5.5斤的鱼售价为每斤16元,这类鱼养殖一周的费用是平均每尾24元通过计算确定水产养殖户选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知mn是两条不同的直线,αβ是两个不同的平面,给出下列命题:

①若mnnβmα,则αβ

②若αβαβmnm,则nαnβ

③若mαmnnβ,则αβαβ

④若αβmnmnαnβ,则nαnβ

其中正确命题的序号是(

A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在实数集R上的奇函数,且在区间上是单调递增,若,则的取值范围为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的图象在处的切线方程;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx是定义在(﹣11)上的奇函数,且f

1)确定函数的解析式;

2)用定义法判断函数的单调性;

3)解不等式;ft1+ft)<0.

查看答案和解析>>

同步练习册答案