精英家教网 > 高中数学 > 题目详情

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

【答案】(1)

(2)

【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.

详解:如图在正三棱柱ABCA1B1C1ACA1C1的中点分别为OO1OBOCOO1OCOO1OB为基底建立空间直角坐标系Oxyz

因为AB=AA1=2,

所以

(1)因为PA1B1的中点所以

从而

因此异面直线BPAC1所成角的余弦值为

(2)因为QBC的中点所以

因此

n=(xyz为平面AQC1的一个法向量

不妨取

设直线CC1与平面AQC1所成角为

所以直线CC1与平面AQC1所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过焦点且斜率存在的直线与抛物线交于两点,且点在点上方,点与点关于轴对称.

(1)求证:直线过某一定点

(2)当直线的斜率为正数时,若以为直径的圆过,求的内切圆与的外接圆的半径之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中(如图1),的中点,,且,现将此平面四边形沿折起使二面角为直二面角,得到立体图形(如图2),又为平面内一点,并且为正方形,设分别为的中点.

(Ⅰ)求证:面

(Ⅱ)在线段上是否存在一点,使得面与面所成二面角的余弦值为?若存在,求线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,满足,且的两实根之积为4

1)求的解析式;

2)求函数,在上的最大值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

1)求实数的值;

2)若,对任意恒成立,求实数取值范围;

3)设,,问是否存在实数使函数上的最大值为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:

最低气温(℃)

天数

11

25

36

16

2

以最低气温位于各区间的频率代替最低气温位于该区间的概率.

求11月份这种电暖气每日需求量(单位:台)的分布列;

若公司销售部以每日销售利润(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线有共同的焦点,点的交点,若是锐角三角形,则椭圆离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).

6

7

6

7

8

5

6

7

8

(Ⅰ)试估计班学生人数;

(Ⅱ)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,若学生锻炼相互独立,求甲的锻炼时间大于乙的锻炼时间的概率.

查看答案和解析>>

同步练习册答案