【题目】函数,且恒成立.
(1)求实数的集合;
(2)当时,判断图象与图象的交点个数,并证明.
(参考数据:)
【答案】(1);(2)2个,证明见解析
【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;
(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.
(1)的定义域为,因为,
1°当时,在上单调递减,时,使得,与条件矛盾;
2°当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,
若;
若;而时,,要使恒成立,
故.
(2)原问题转化为方程实根个数问题,
当时,图象与图象有且仅有2个交点,理由如下:
由,即,令,
因为,所以是的一根;,
1°当时,,
所以在上单调递减,,即在上无实根;
2°当时,,
则在上单调递递增,又,
所以在上有唯一实根,且满足,
①当时,在上单调递减,此时在上无实根;
②当时,在上单调递增,
,故在上有唯一实根.
3°当时,由(1)知,在上单调递增,
所以,
故,所以在上无实根.
综合1°,2°,3°,故有两个实根,即图象与图象有且仅有2个交点.
科目:高中数学 来源: 题型:
【题目】如图①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图②.
(1)求证:AM∥平面BEC;
(2)求点D到平面BEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.
(1)求的长;
(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,,)的图象如图所示,令,则下列关于函数的说法中正确的是( )
A. 函数图象的对称轴方程为
B. 函数的最大值为2
C. 函数的图象上存在点,使得在点处的切线与直线平行
D. 若函数的两个不同零点分别为,,则最小值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是( )
A.2019年12月份,全国居民消费价格环比持平
B.2018年12月至2019年12月全国居民消费价格环比均上涨
C.2018年12月至2019年12月全国居民消费价格同比均上涨
D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的图象经过点.
(1)求抛物线的方程和焦点坐标;
(2)直线交抛物线于,不同两点,且,位于轴两侧,过点,分别作抛物线的两条切线交于点,直线,与轴的交点分别记作,.记的面积为,面积为,面积为,试问是否为定值,若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(,t为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直角坐标系下直线与曲线的普通方程;
(2)设直线与曲线交于点、(二者可重合),交轴于,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒肺炎疫情爆发以来,疫情防控牵挂着所有人的心. 某市积极响应上级部门的号召,通过沿街电子屏、微信公众号等各种渠道对此战“疫”进行了持续、深入的悬窗,帮助全体市民深入了解新冠状病毒,增强战胜疫情的信心. 为了检验大家对新冠状病毒及防控知识的了解程度,该市推出了相关的知识问卷,随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制频率分布直方图如图所示,把年龄落在区间和内的人分别称为“青少年人”和“中老年人”. 经统计“青少年人”和“中老年人”的人数比为19:21. 其中“青少年人”中有40人对防控的相关知识了解全面,“中老年人”中对防控的相关知识了解全面和不够全面的人数之比是2:1.
(1)求图中的值;
(2)现采取分层抽样在和中随机抽取8名市民,从8人中任选2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根据已知条件,完成下面的2×2列联表,并根据统计结果判断:能够有99.9%的把握认为“中老年人”比“青少年人”更加了解防控的相关知识?
了解全面 | 了解不全面 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )
注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com