精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)讨论的单调性,并证明有且仅有两个零点;

(Ⅱ)设的一个零点,证明曲线在点处的切线也是曲线的切线.

【答案】(Ⅰ)单调递增,证明见解析;(Ⅱ)见解析.

【解析】

(Ⅰ)先求得函数的定义域,利用导数求得函数的单调区间,结合零点存在性定理证得有且仅有两个零点.

(Ⅱ)令,得.利用求得曲线处的切线,求得与此切线的斜率相等的曲线的切线方程,利用判断出这两条切线方程相同,由此证得结论成立.

(Ⅰ)的定义域为

因为,所以单调递增.

因为,所以有唯一零点

因为,由,得

因为,所以有唯一零点.

综上,有且仅有两个零点.

(Ⅱ)由题设知,即

,得,曲线处的切线为:

,即.

,得,则曲线的斜率为的切线的切点横坐标满足,解得,代入,得

故曲线的斜率为的切线方程为,即

,得,从而为同一条直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求曲线C的参数方程和直线的直角坐标方程;

(2)若直线轴和y轴分别交于AB两点,P为曲线C上的动点,求PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥PABC,点PABC都在半径为的球面上,若PAPBPC两两互相垂直,则球心到截面ABC的距离为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的方程;

(2)如图,过定点的直线交椭圆两点,连接并延长交,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处取得极值,其中为常数.

I)试确定的值;

II)讨论函数的单调区间;

III)若对任意,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形,平面分别是的中点.

1证明:

2上的动点,与平面所成最大角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的423日为世界读书日,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间(小时)的频率分布直方图如图所示:

1)求样本学生一个月阅读时间的中位数.

2)已知样本中阅读时间低于的女生有30名,请根据题目信息完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.

列联表

总计

总计

附表:

0.15

0.10

0.05

2.072

2.706

3.841

其中:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中错误的是(

A.的图像关于点对称B.的图像关于直线对称

C.的最大值为D.是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据中国生态环境部公布的2017年、2018年长江流域水质情况监测数据,得到如下饼图:

则下列说法错误的是(

A.2018年的水质情况好于2017年的水质情况

B.2018年与2017年相比较,Ⅰ、Ⅱ类水质的占比明显增加

C.2018年与2017年相比较,占比减小幅度最大的是Ⅳ类水质

D.2018年Ⅰ、Ⅱ类水质的占比超过

查看答案和解析>>

同步练习册答案