精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知三个集合

A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-bx+2=0},问同时满足B A、CA的实数a、b是否存在?若存在,求出a、b所有值的集合;若不存在,请说明理由.

 

【答案】

a=2,b=3.

【解析】主要考查子集的概念。首先求得A={1,2},利用 B A,确定集合B的三种可能B={1}或B={2}或B=.得出a的值;由CA,得b2-8<0或

解得b=3. 求出a、b所有值的集合:{(2,3)}.

解:∵A={x|x2-3x+2=0}={1,2},

又B A,∴B={1}或B={2}或B=.

又B={x|x2-ax+(a-1)=0}={x|(x-1)[x-(a-1)]=0},

∴B={1},即a-1=1a=2.

由B=,得(-a)2-4(a-1)<0,

即(a-2)2<0.

∴a无解.

由CA,得b2-8<0或

解得b=3.

综上所述,a=2,b=3.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题

(本题满分12分)已知△的三个内角所对的边分别为.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

(本题满分12分)

已知椭圆的长轴长是短轴长的倍,是它的左,右焦点.

(1)若,且,求的坐标;

(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率

(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

 

查看答案和解析>>

同步练习册答案