设数列的前n项和为,已知, ,
(1)求数列的通项公式;
(2)若,数列的前n项和为,,证明:.
(1);(2)证明过程详见解析.
解析试题分析:本题主要考查等比数列的通项公式、配凑法求通项公式、错位相减法求和等基础知识,考查学生分析问题解决问题的能力,考查转化能力和计算能力.第一问,已知条件中只有一个等式,利用,用代替式子中的,得到一个新的表达式,两个式子相减得到,再用配凑法,凑出等比数列,求出数列的通项公式;第二问,利用第一问的结论,先化简表达式,再利用错位相减法求数列的前n项和,最后的结果与2比较大小.
试题解析:(Ⅰ)∵,当时
∴ 2分
∴ 即 ()
又 ∴ ∴
∴ 即 6分
(Ⅱ)∵ ∴ 8分
∴,
∴ 12分
考点:1 由求;2 配凑法求通项公式;3 等比数列的通项公式;4 错位相减法
科目:高中数学 来源: 题型:解答题
已知数列{an}的各项均为正数的等比数列,且a1a2=2,a3a4=32,
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Sn=n2,(n∈N*),求数列{anbn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和Sn与通项an满足Sn=-an.
(1)求数列{an}的通项公式;
(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n项和Un.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
等比数列{cn}满足cn+1+cn=10·4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.
(1)求an,Sn;
(2)数列{bn}满足bn=,Tn为数列{bn}的前n项和,是否存在正整数m(m>1),使得T1,Tm,T6m成等比数列?若存在,求出所有m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}成等比数列,且an>0.
(1)若a2-a1=8,a3=m.①当m=48时,求数列{an}的通项公式;②若数列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.
(1)求数列{an} 的通项公式;
(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和是Sn,且Sn+an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3,数列的前n项和为Tn,证明:Tn<.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com