精英家教网 > 高中数学 > 题目详情
5.计算:23+log25=40.

分析 直接利用对数运算法则化简求解即可.

解答 解:23+log25=8×5=40.
故答案为:40.

点评 本题考查对数运算法则的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知α∈(π,2π),tanα=$\frac{1}{2}$,则sinα+cosα等于(  )
A.-$\frac{3}{5}$$\sqrt{5}$B.$-\frac{2}{5}\sqrt{5}$C.$\frac{3}{5}\sqrt{5}$D.$-\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l与椭圆4x2+y2=4交于P,Q两点,若OP⊥OQ,则l在两坐标轴上的截距乘积最小值为(  )
A.$\frac{5}{6}$B.$\frac{8}{5}$C.2D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的面积S满足1$≤S≤\sqrt{3}$,且$\overrightarrow{AC}•\overrightarrow{CB}=-2$,∠ACB=θ.
(1)求函数f(θ)=sin($θ-\frac{π}{4}$)+4$\sqrt{2}$sinθcosθ-cos($θ+\frac{π}{4}$)-2的最大值;
(2)若$\overrightarrow{m}$=(sin2A,cos2A),$\overrightarrow{n}$=(cos2B,sin2B),求|2$\overrightarrow{m}$-3$\overrightarrow{n}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2-4x(x∈[0,5])的值域为(  )
A.[-4,+∞)B.[-4,5]C.[-4,0]D.[0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn={1,2,…,n},若X是Sn的子集,把X中的所有数的和称为X的“容量”(规定φ的容量为0),若X的容量为奇(偶)数,则称X为Sn的奇(偶)子集.
(1)求证:Sn的奇子集与偶子集个数相等;
(2)求证:当n≥3时,Sn的所有奇子集的容量之和等于所有偶子集的容量之和;
(3)求n≥3时Sn的所有奇子集的容量和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)为减函数,则a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.( $\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知下列命题
①b2=ac,则a,b,c成等比数列;
②若{an}为等差数列,且常数c>0,则数列{can}为等比数列;
③若{an}为等比数列,且常数c>0,则数列{can}为等比数列;
④常数列既为等差数列,又是等比数列.
其中,真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.

查看答案和解析>>

同步练习册答案