精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则(其中a+c≠0)的取值范围为_____

【答案】(﹣∞,﹣6]∪[6,+∞)

【解析】

由条件利用二次函数的性质可得ac=﹣1,ab=1, c=-b转为(a﹣b)+,利用基本不等式求得它的范围.

因为一元二次不等式ax2+2x+b>0的解集为{x|x≠c},由二次函数图像的性质可得a>0,二次函数的对称轴为x==c,△=4﹣4ab=0,

∴ac=﹣1,ab=1,∴c=,b=c=-b,

==(a﹣b)+

a﹣b>0时,由基本不等式求得(a﹣b)+≥6,

a﹣b<0时,由基本不等式求得﹣(a﹣b)﹣≥6,即(a﹣b)+≤﹣6,

(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),

故答案为:(﹣∞,﹣6]∪[6,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,.

1)证明:

2)若,在线段上是否存在一点,使二面角的余弦值为?若存在,求的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术是我国古代著名数学经典其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示阴影部分为镶嵌在墙体内的部分已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈寸,)

A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角坐标系中,点到抛物线的准线的距离为,点上的定点,上的两个动点,且线段的中点在线段.

1)抛物线的方程及的值;

2)当点分别在第一、四象限时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新中国成立70周年以来,党中央国务院高度重视改善人民生活,始终把提高人民生活水平作为一切工作的出发点和落脚点城乡居民收入大幅增长,居民生活发生了翻天覆地的变化.下面是1949年及2015~2018年中国居民人均可支配收入(元)统计图.以下结论中不正确的是(

A.20l5-2018年中国居民人均可支配收入与年份成正相关

B.2018年中居民人均可支配收入超过了1949年的500

C.2015-2018年中国居民人均可支配收入平均超过了24000

D.2015-2018年中围居民人均可支配收入都超过了1949年的500

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列首项和公差都是,记的前n项和为,等比数列各项均为正数,公比为q,记的前n项和为

1)写出构成的集合A

2)若将中的整数项按从小到大的顺序构成数列,求的一个通项公式;

3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的的通项公式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱柱中,底面的边长为1为正方形的中心.

1)求证:平面

2)若异面直线所成的角的正弦值为,求直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点为,点是椭圆上的动点,且不与重合,点满足.

(Ⅰ)求动点的轨迹方程;

(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E. J. Brouwer),简单的讲就是对于满足一定条件的连续函数,存在一个点,使得,那么我们称该函数为不动点函数,下列为不动点函数的是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案