精英家教网 > 高中数学 > 题目详情

【题目】已知F2、F1是双曲线 (a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为(
A.3
B.
C.2
D.

【答案】C
【解析】解:由题意,F1(0,﹣c),F2(0,c),
一条渐近线方程为y= x,则F2到渐近线的距离为 =b.
设F2关于渐近线的对称点为M,F2M与渐近线交于A,
∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2﹣a2),∴c2=4a2
∴c=2a,∴e=2.
故选C.
首先求出F2到渐近线的距离,利用F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,可得直角三角形MF1F2 , 运用勾股定理,即可求出双曲线的离心率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若在区间[01]上有最大值1和最小值-2.求ab的值;

2)在(1)条件下,若在区间上,不等式fx 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形中, 底面 底面且有.

(1)求证:

(2)若线段的中点为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC的角平分线AD的延长线交它的外接圆于点E.

(1)证明:△ABE∽△ADC;
(2)若△ABC的面积S= ADAE,求∠BAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,将的图象向右平移两个单位长度,得到函数的图象.

(1)求函数的解析式;

(2)若方程上有且仅有一个实根,求的取值范围;

(3)若函数的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年3月山东省高考改革实施方案发布:2020年夏季高考开始全省高考考生总成绩将由语文、数学、外语三门统一高考成绩和学生自主选择的普通高中学业水平等级性考试科目的成绩共同构成.省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.右面是根据样本的调查结果绘制的等高条形图.

(Ⅰ)请根据已知条件与等高条形图完成下面的列联表:

赞成

不赞成

合计

城镇居民

农村居民

合计

(Ⅱ)试判断我们是否有95%的把握认为“赞成高考改革方案与城乡户口有关”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的则判断框内可以填入

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500/件的新产品,规定试销时销售单价不低于成本单价,又不高于800/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).

1)由图象,求函数的表达式;

2)设公司获得的毛利润(毛利润=销售总价﹣成本总价)为元.试用销售单价表示毛利润,并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1的所有棱长都为2,DCC1中点.

(1)求证:AB1⊥平面A1BD;

(2)求锐二面角A-A1D-B的余弦值;

查看答案和解析>>

同步练习册答案