精英家教网 > 高中数学 > 题目详情

如图,已知为平面上的两个定点,为动点,的交点)

⑴建立适当的平面直角坐标系求出点的轨迹方程;

⑵若点的轨迹上存在两个不同的点,且线段的中垂线与(或的延长线)相交于一点,证明:的中点)

解:⑴如图1,以所在的直线为轴,的中垂线为轴,建立平面直角坐标系

由题设

,而

是以为焦点、长轴长为的椭圆,故点的轨迹方程为

⑵如图2,设,且

,又在轨迹上,

代入整理得:

   

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知圆C的方程为:x2+y2-6x-8y+21=0,平面上有A(1,0)和B(-1,0)两点.
(I)在圆上求一点Q,使△ABQ的面积最大,并求出最大面积;
(II)在圆上求一点P,使|AP|2+|BP|2取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆轴负半轴的交点为. 由点出发的射线的斜率为. 射线与圆相交于另一点

(1)当时,试用表示点的坐标;

(2)当时,求证:“射线的斜率为有理数”是“点为单位圆上的有理点”的充要条件;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为,其中均为整数且互质)

(3)定义:实半轴长、虚半轴长和半焦距都是正整数的双曲线为“整勾股双曲线”.

为有理数且时,试证明:一定能构造偶数个“整勾股双曲线”(规定:实轴长和虚轴长都对应相等的双曲线为同一个双曲线),它的实半轴长、虚半轴长和半焦距的长恰可由点的横坐标、纵坐标和半径的数值构成. 说明你的理由并请尝试给出构造方法.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省六安市徐集中学高三(上)摸底数学试卷(理科)(解析版) 题型:解答题

如图,已知圆C的方程为:x2+y2-6x-8y+21=0,平面上有A(1,0)和B(-1,0)两点.
(I)在圆上求一点Q,使△ABQ的面积最大,并求出最大面积;
(II)在圆上求一点P,使|AP|2+|BP|2取得最小值.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题

如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

同步练习册答案