(本小题满分12分)
已知函数 (是自然对数的底数,).
(1)当时,求的单调区间;
(2)若在区间上是增函数,求实数的取值范围;
(3)证明对一切恒成立.
(1)在区间上单调递增,在区间上单调递减。
(2);(3).
【解析】本试题主要是考查了导数在研究函数中的 运用。利用导数的符号判定函数单调性和利用单调性逆向求解参数的范围,和不等式的证明。
(1)首先求解定义域和导数,然后令导数大于零,小于零得到单调区间。
(2)因为在区间上是增函数,则说明函数在给定区间的导函数恒大于等于零,利用分离参数的思想求解参数的取值范围。
(3)利用第一问中函数的结论,令得,,那么所以在上为减函数,可得对于任意,都有,故有
,放缩法证明不等式。
解:(1)当时,,
由,……………………………………………..4分
所以,在区间上单调递增,在区间上单调递减。
(2),
由题意得当时,恒成立。
令,有,得,
所以的范围是…………………………………………8分
(3)令得,,
所以在上为减函数,对于任意,都有,故有
即
即. ………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com