精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的图象关于直线对称,它的最小正周期为π,则(   )

A. f(x)的图象过点(0,) B. f(x)上是减函数

C. f(x)的一个对称中心是 D. f(x)的一个对称中心是

【答案】C

【解析】分析:根据周期求出ω,根据函数图象关于直线x=对称求出φ,可得函数的解析式,根据函数的解析式判断各个选项是否正确.

详解:由题意可得=π,∴ω=2,可得f(x)=Asin(2x+φ).

再由函数图象关于直线x=对称,故f()=Asin(+φ)=±A,故可取φ=

故函数f(x)=Asin(2x+).

2kπ+≤2x+≤2kπ+,kz,求得 kπ+≤x≤kπ+π,kz,

故函数的减区间为[kπ+,kπ+],kz,故选项B不正确.

由于A不确定,故选项A不正确. 2x+=kπ,kz,可得 x=,kz,

故函数的对称中心为,0),kz,故选项C正确.选项D不正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从点P(4,5)向圆(x-2)2y2=4引切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校高一年级研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究性学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1 人作为代表发言.设每人每次被选中与否均互不影响.

1求两次汇报活动都由小组成员甲发言的概率;

2为男生发言次数与女生发言次数之差的绝对值,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形的边长为,将菱形沿对角线折起,得到三棱锥,点是棱的中点,

)求证:平面

)求证:平面平面

)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数和函数在区间上均为增函数,求实数的取值范围;

2)若方程有唯一解,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若关于的不等式的解集为,求实数的取值范围

若关于的不等式的解集是,求的值

若关于的不等式的解集是,集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的离心率为2,右焦点到它的一条渐近线的距离为

(1)求双曲线的标准方程;

(2)是否存在过点且与双曲线的右支角不同的两点的直线,当点满足时,使得点在直线上的射影点满足?若存在,求出直线的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按 1小时计算).有甲、乙两人独立来该租车点骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.

(1)求甲、乙两人所付租车费用相同的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列.

查看答案和解析>>

同步练习册答案