【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.
【答案】
(1)解:由2asinB= b,利用正弦定理得:2sinAsinB= sinB,
∵sinB≠0,∴sinA= ,
又A为锐角,
则A= ;
(2)解:由余弦定理得:a2=b2+c2﹣2bccosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,
∴bc= ,又sinA= ,
则S△ABC= bcsinA= .
【解析】(1)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(2)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.
科目:高中数学 来源: 题型:
【题目】已知圆C经过A(3,2)、B(1,6),且圆心在直线y=2x上. (Ⅰ)求圆C的方程.
(Ⅱ)若直线l经过点P(﹣1,3)与圆C相切,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线和定点, 是此曲线的左、右焦点,以原点为极点,以轴正半轴为极轴,建立极坐标系.
(1)求直线的极坐标方程;
(2)经过点且与直线垂直的直线交此圆锥曲线于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个问题:①x,输出它的绝对值.②求面积为6的正方形的周长.③求三个数a,b,c中最大数.④求函数的函数值.其中不需要用条件语句来描述其算法的有 个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{an}的各项均为正数,其前n项和为Sn , 若a1=1,a3=4.
(1)若Sk=63,求k的值;
(2)设bn=log2an , 证明数列{bn}是等差数列;
(3)设cn=(﹣1)nbn , 求T=|c1|+|c2|+|c3|+…+|cn|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com