精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,平面ABC,平面平面PBC

1)证明:平面PBC

2)求点C到平面PBA的距离.

【答案】(1)证明见解析;(2)

【解析】

1)由平面ABC,可得,通过取中点,由平面平面PBC,可得平面PAC,从而,然后根据线面垂直的判定定理即可证得平面PBC

2)根据平面ABC可得平面平面ABC,过点过点C,交ABM,则即为所求,在内根据等面积法即可求出.

1)证明:平面ABC平面ABC

PC的中点D,连接BD

平面平面PBC,平面平面平面PBC

平面PAC.又平面PAC

平面PBC

2)易知平面平面ABCAB为交线,在中,过点C,交ABM,则平面PBA

C到平面PBA的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术区块链作为构造信任的机器,将可能彻底改变整个人类社会价值传递的方式,2015年至2019年五年期间,中国的区块链企业数量逐年增长,居世界前列现收集我国近5年区块链企业总数量相关数据,如表

年份

2015

2016

2017

2018

2019

编号

1

2

3

4

5

企业总数量y(单位:千个)

2.156

3.727

8.305

24.279

36.224

注:参考数据(其中zlny).

附:样本(xiyi)(i12n)的最小二乘法估计公式为

1)根据表中数据判断,ya+bxycedx(其中e2.71828…,为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由)

2)根据(1)的结果,求y关于x的回归方程(结果精确到小数点后第三位);

3)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司就获得此次信息化比赛的优胜公司,已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,请通过计算说明,哪两个公司进行首场比赛时,甲公司获得优胜公司的概率最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且点在椭圆.

1)求椭圆的标准方程;

2)过点的直线与椭圆交于两点,在直线上存在点,使三角形为正三角形,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上任意一点到其两个焦点的距离之和等于,且圆经过椭圆的焦点.

1)求椭圆的方程;

2)如图,若直线与圆O相切,且与椭圆相交于AB两点,直线平行且与椭圆相切于点MOM位于直线的两侧).记的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,已知a1+a312,a2+a418,nN*.

1)求数列{an}的通项公式;

2)求a3+a6+a9++a3n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,有下列4个命题:

,则的图象关于直线对称;

的图象关于直线对称;

为偶函数,且,则的图象关于直线对称;

为奇函数,且,则的图象关于直线对称.

其中正确的命题为 .(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,是等边三角形,点在棱上,平面平面.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市208年抽样100户居民的月均用电量(单位:千瓦时),以分组,得到如下频率分布表:

分组

频数

频率

0.04

19

0.22

25

0.25

15

0.15

10

5

0.05

1)求表中的值,并估计2018年该市居民月均用电量的中位数

2)该城市最近十年的居民月均用电量逐年上升,以当年居民月均用电量的中位数(单位:千瓦时)作为统计数据,下图是部分数据的折线图.

由折线图看出,可用线性回归模型拟合与年份的关系.

①为简化运算,对以上数据进行预处理,令,请你在答题卡上完成数据预处理表;

②建立关于的线性回归方程,预测2020年该市居民月均用电量的中位数.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年第十三届女排世界杯共12支参赛球队,比赛赛制釆取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取53胜制):比赛中以3—03—1取胜的球队积3分,负队积0分;而在比赛中以3—2取胜的球队积2分,负队积1分.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22分.第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为

1)第10轮比赛中,记中国队3—1取胜的概率为,求的最大值点

2)以(1)中的作为的值.

i)在第10轮比赛中,中国队所得积分为,求的分布列;

)已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.

查看答案和解析>>

同步练习册答案