精英家教网 > 高中数学 > 题目详情
19.函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3xf(x)+x2f(x)<0,则不等式(x+2016)3f(x+2016)+27f(-3)>0的解集(  )
A.(-2018,-2016)B.(-∞,-2016)C.(-2019,-2016)D.(-∞,-2019)

分析 先构造函数g(x)=x3f(x),再根据导数和函数的单调性的关系得到g(x)在(-∞,0)为增函数,由(x+2016)3f(x+2016)+274f(-3)>0得到g(x+2016)>g(-3)根据函数的单调性即可求出答案.

解答 解:令g(x)=x3f(x),
∴g′(x)=3x2f(x)+x3f′(x),
∵3f(x)+x2f′(x)<0,
x<0时,g′(x)>0,
∴g(x)在(-∞,0)为增函数,
∵(x+2016)3f(x+2016)+27f(-3)>0,
∴(x+2016)3f(x+2016)>(-3)3f(-3),
即g(x+2016)>g(-3),
∴$\left\{\begin{array}{l}{x+2016<0}\\{x+2016>-3}\end{array}\right.$,
解得:-2019<x<-2016,
故选:C.

点评 本题考查函数的单调性与导数的关系,两个函数乘积的导数的求法,而构造函数是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图,梯形A1B1C1D1是一平面图形ABCD的直观图(斜二测),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,则原平面图形ABCD的面积是(  )
A.14.B.7C.$14\sqrt{2}$D.$7\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(2,1),且离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点的直线l1与椭圆C交于P,Q两点,且在直线l2:x-y+2$\sqrt{6}$=0上存在点M,使得△MPQ为等边三角形,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和${S_n}=6n-{n^2}$,则数列 $\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前20项和等于$-\frac{4}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是实现秦九韶算法的程序框图,若输入的x=2,n=2,依次输入a=3,4,5,6,7,…,则输出的s=(  )
A.3B.10C.25D.56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边是a,b,c,已知a=$\sqrt{3}$c,cos2B=$\frac{1}{2}$,B为钝角.
(1)求B;
(2)若b=$\sqrt{7}$,求AC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设曲线y=x2-x在点(3,6)处的切线与直线ax+y+1=0垂直,则a=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3$\sqrt{2}$,则它的侧棱长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某模具长新接一批新模型制作的订单,为给订购方回复出货时间,需确定制作该批模型所花费的时间,为此进行了5次试验,收集数据如下:
 制作模型数x(个) 10 20 30 40 50
 花费时间y(分钟) 64 69 75 82 90
(1)请根据以上数据,求关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间.
(注:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,参考数据:$\sum_{i=1}^{5}$xiyi=12050,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5500)

查看答案和解析>>

同步练习册答案