精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0且a≠1)在R上单调递减,则a的取值范围是(  )
A.[$\frac{3}{4}$,1)B.(0,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{3}{4}$]D.(0,$\frac{1}{3}$]

分析 根据分段函数是在R上单调递减,可得0<a<1,故而二次函数在($-∞,-\frac{b}{2a})$单调递减,可得$-\frac{b}{2a}≥0$.且[x2+(4a-3)x+3a]min≥[loga(x+1)+1]max即可得a的取值范围.

解答 解:由题意,分段函数是在R上单调递减,可得对数的底数需满足0<a<1,
根据二次函数开口向上,在($-∞,-\frac{b}{2a})$单调递减,可得$-\frac{b}{2a}≥0$,即$-\frac{4a-3}{2}≥0$,解得:$a≤\frac{3}{4}$.
且[x2+(4a-3)x+3a]min≥[loga(x+1)+1]max
故而得:3a≥1,解得:a$≥\frac{1}{3}$.
∴a的取值范围是[$\frac{1}{3}$,$\frac{3}{4}$],
故选:C.

点评 本题考查了分段函数的单调性的运用求解参数问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,则$\frac{1-i}{i^3}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面α的法向量$\overrightarrow{{n}_{1}}$=(x,1,-2),平面β的法向量$\overrightarrow{{n}_{2}}$=(-1,y,$\frac{1}{2}$),若α∥β,则x+y=$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若全集U={0,1,2,3},A={0,1,2},B={0,2,3},则A∪(∁UB)=(  )
A.B.{1}C.{0,1,2}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆Q过三点A(1,0),B(3,0),C(0,1),则圆Q的标准方程为(x-2)2+(y-2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察以下不等式:
①1+$\frac{1}{2^2}$<$\frac{3}{2}$;
②1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$;
③1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,
则第六个不等式是1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$+…+$\frac{1}{{7}^{2}}$<$\frac{13}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两条直线l1:ax+(1+a)y=3,l2:(a+1)x+(3-2a)y=2互相垂直,则a的值是 (  )
A.3B.-1C.-1或3D.0 或 3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+(b-2)x+3,且-1,3是函数f(x)的零点.
(Ⅰ)求f(x)解析式,并解不等式f(x)≤3;
(Ⅱ)若g(x)=f(sinx),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等比数列{an}中,a2020=8a2017,则公比q的值为(  )
A.2B.3C.4D.8

查看答案和解析>>

同步练习册答案