精英家教网 > 高中数学 > 题目详情

【题目】是正整数,且.(1)试求出最大的正整数,使得存在各边长都是不大于的正整数,且任意两边之差(大减小)都不小于k的三角形;(2)试求出所有的正整数,使得(1)中所述的对应于最大的正整数的三角形有且只有一个.

【答案】(1);(2)见解析

【解析】

(1)设三角形三边长为正整数,且

.

则有.

从而,.

.所以.

又因为,因此.

时,可取正整数满足

再取

此时且满足.

这说明当时,存在满足要求的三角形.

综上所述正整数的最大值是.

(2)由(1)知,其中

所以,.

欲使对应于的三角形是惟一的,

必须 (否则,可取到2个正整数),

.

所以,即.当然,这是必要的.

下面证明这也是充分的.

时,

所以

.

,所以,.且以上各式的等号必须都成立.

.

只有这一个满足要求的三角形,充分性得证.

总之,所求的必是满足的正整数.

注:表示不大于的最大整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,点B与点A-1,1)关于原点O对称,P是动点,且直线APBP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;

(Ⅱ)设直线APBP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,侧面底面为线段的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个相同的小球放到三个编号为的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆周上有9个点,以这9个点为顶点作3个三角形.当这3个三角形无公共顶点且边互不相交时,我们把它称为一种构图.满足这样条件的构图共有( )种.

A. 3 B. 6 C. 9 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.210.230.250.28,计算这个射手在一次射击中:

1)射中10环或7环的概率; (2)不够7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的内切圆切边于点, 而是边上的任意内点.设的内切圆圆心分别是.

(1)求证:∠I1DI2 =90°(即四点共圆);

(2)设四点所在的圆周的半径为, 而的内切圆半径为,试求的取值范围(取遍各种形状的三角形,点取遍边上的每一个内点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,原文是:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之. 翻译为现代的语言如下:如果需要对分数进行约分,那么可以折半的话,就折半(也就是用2来约分).如果不可以折半的话,那么就比较分母和分子的大小,用大数减去小数,互相减来减去,一直到减数与差相等为止,用这个相等的数字来约分,现给出“更相减损术”的程序框图如图所示,如果输入的,则输出的( )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

同步练习册答案