分析 设直线的截距式为:$\frac{x}{a}+\frac{y}{b}$=1(a,b>0),可得$\frac{1}{a}+\frac{1}{b}$=1.因此a+b=(a+b)$(\frac{1}{a}+\frac{1}{b})$=2+$\frac{b}{a}+\frac{a}{b}$,再利用基本不等式的性质即可得出.
解答 解:设直线的截距式为:$\frac{x}{a}+\frac{y}{b}$=1(a,b>0),
则$\frac{1}{a}+\frac{1}{b}$=1.
∴a+b=(a+b)$(\frac{1}{a}+\frac{1}{b})$=2+$\frac{b}{a}+\frac{a}{b}$≥2+2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=4,当且仅当a=b=2时取等号.
∴该直线的方程是x+y-2=0.
故答案为:x+y-2=0.
点评 本题考查了直线的截距式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com