精英家教网 > 高中数学 > 题目详情

【题目】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随即编号为1,2…960,分组后在第一组采用简单随机抽样的方法抽到的号码为5,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的32人中,做问卷C的人数为(
A.15
B.10
C.9
D.7

【答案】D
【解析】解:∵960÷32=30,∴由题意可得抽到的号码构成以5为首项、以30为公差的等差数列,
且此等差数列的通项公式为an=5+(n﹣1)30=30n﹣25.
落人区间[751,960]的人做问卷C,
由 751≤30n﹣25≤960,
即776≤30n≤985
解得25 ≤n≤32
再由n为正整数可得26≤n≤32,
∴做问卷C的人数为32﹣26+1=7,
故选:D.
由题意可得抽到的号码构成以5为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=5+(n﹣1)30=30n﹣25,由751≤30n﹣25≤981求得正整数n的个数,即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+(2b﹣1)x+6b﹣a为偶函数,且f(x+1)﹣f(x)=2x+1.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)+λx,求函数g(x)在[0,1]内的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项为正数的数列{an}的前n项和为Sn , 且满足:Sn= an2+ an+ (n∈N*
(1)求an
(2)设数列{ }的前n项和为Tn , 证明:对一切正整数n,都有Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点为,且

1)求椭圆的标准方程;

2)圆是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求的面积的取值范围.

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数

(1)若曲线在点处的切线与直线垂直,求的值;

(2)若存在极小值时,不等式恒成立,求实数的取值范围;

(3)当时,如果存在两个不相等的正数,使得,求证:

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,甲向如图1所示的平面区域内随机掷点、乙向如图2所示的平面区域内随机掷点,假设点落在区域内任意一点的可能性相同.已知图1中小圆的半径是大圆半径的二分之一,图2中小正方形的顶点为大正方形各边的中点.

(1)甲、乙各掷点一次,求至少有一人掷点落在阴影区域的概率;

(2)甲、乙各掷点两次,记点落在阴影区域的次数为,求的分布列和数学期望.

12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线的斜率为1.

(1)如果常数,求函数在区间上的最大值;

(2)对于,如果方程上有且只有一个解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

同步练习册答案