精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: (a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线l:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

【答案】12

【解析】试题分析:(1由椭圆的离心率等于,原点到直线的距离等于及隐含条件联立方程组求解的值,则椭圆的标准方程可求;(2)联立直线方程和椭圆方程,消去后利用根与系数关系得到两点的横坐标的和与积,由弦长公式求得,由点到直线的距离公式求得的距离,代入三角形的面积公式证得答案.

试题解析:(1)由题意得

椭圆的方程为.

(2)设 则A,B的坐标满足

消去y化简得

=

,即

=

O到直线的距离

===为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.

(1)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;

(2)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系xOyx轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程ykx (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABCA1B1C1中,侧面AA1C1C是菱形,AC1A1C交于点O,点EAB的中点.

(1)求证:OE∥平面BCC1B1.

(2)AC1A1B,求证:AC1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

1)若用线性回归模型拟合的关系,求关于的线性回归方程;

2)用二次函数回归模型拟合的关系,可得回归方程:

经计算二次函数回归模型和线性回归模型的分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.

参数数据及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期为.

(1)求ω的值;

(2)在△ABC中,sinB,sinA,sinC成等比数列,求此时f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数. 

(1)判断函数的单调性并证明;

(2)当时,对于任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).

查看答案和解析>>

同步练习册答案