精英家教网 > 高中数学 > 题目详情
15.已知线段PQ两端点的坐标分别为(-1,1),(2,2),若直线l:x+my+m=0与线段PQ有交点,求m的取值范围

分析 根据题意,分析可得P,Q两点在直线的两侧或在直线l上,则有(-1+m+m)•(2+2m+m)≤0,解可得m的值,即可得答案.

解答 解:根据题意,直线l:x+my+m=0与线段PQ有交点,
则P,Q两点在直线的两侧或在直线l上,
则有(-1+m+m)•(2+2m+m)≤0;
解得-$\frac{2}{3}$≤m≤$\frac{1}{2}$,
即m的取值范围是[-$\frac{2}{3}$,$\frac{1}{2}$].

点评 本题考查一元二次方程表示平面区域的问题,关键是将直线与线段相交问题转化为点在直线的异侧问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.四位同学参加知识竞赛,每位同学须从甲乙两道题目中任选一道题目作答,答对甲可得60分,答错甲得-60分,答对乙得180分,答错乙得-180分,结果是这四位同学的总得分为0分,那么不同的得分情况共计有44种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知${(2{x^2}-\frac{1}{x})^n}$的展开式二项式系数和比它的各项系数和大31.
(Ⅰ)求展开式中含有x4的项;
(Ⅱ)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}的前n项和为${S_n}=1-5+9-13+17-21+…+{({-1})^{n-1}}({4n-3})$,则S17-S22的值是(  )
A.-11B.46C.77D.-76

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥S-ABCD中,已知SD⊥底面ABCD,且四边形ABCD为直角梯形,∠DAB=∠ADC=$\frac{π}{2}$,SD=DC=2,AD=AB=1,E为棱SB上的一点,且DE⊥SC.
(Ⅰ)求$\frac{SE}{EB}$的值;
(Ⅱ)求直线EC与平面ADE所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z为纯虚数,且(2+i)z=1+ai3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若数f(x)=lnx+x2+ax(a∈R)
(1)若函数f(x)的图象在点P(1,f(1))处的切线与直线x+2y-1=0垂直,求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C1:x2+y2+2x-6y+1=0,与圆C2:x2+y2-4x+2y-11=0相交于A,B两点,求AB所在的直线方程和公共弦AB的长.

查看答案和解析>>

同步练习册答案