精英家教网 > 高中数学 > 题目详情
(2012•贵州模拟)已知直线l1的方程为mx+y=5,直线l2经过点(-4,3)且与圆x2+y2=25相切,若l1⊥l2,则m=(  )
分析:用点斜式设出直线l2的方程,根据圆心O到直线l2的距离等于半径求出直线l2的斜率,再由l1⊥l2,可得这两条直线的斜率之积等于-1,由此求得m的值.
解答:解:设直线l2的方程为 y-3=k(x+4),即 kx-y+4k+3=0.由题意可得圆心O到直线l2的距离等于半径,
|0-0+4k+3|
k2+1
=5,解得 k=
4
3

再由l1⊥l2,可得这两条直线的斜率之积等于-1,即-m•
4
3
=-1,
∴m=
3
4

故选C.
点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,两直线垂直的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•贵州模拟)已知圆C1的参数方程为
x=cosφ
y=sinφ
(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2cos(θ+
π
3
)

(Ⅰ)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(Ⅱ)圆C1、C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)已知函数f(x)=
a+blnx
x+1
在点(1,f(1))处的切线方程为x+y=2.
(I)求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,f(x)<
m
x
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)若点P(1,1)为圆x2+y2-6x=0的弦MN的中点,则弦MN所在直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)(x+1)(1-2x)5展开式中,x3的系数为
-40
-40
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)设集合M={x|x2-x-6<0},N={x|y=log2(x-1)},则M∩N等于(  )

查看答案和解析>>

同步练习册答案