精英家教网 > 高中数学 > 题目详情
18.已知tanα=7,求$\frac{sinα+cosα}{2sinα-cosα}$+sin2α+sinαcosα+3cos2α

分析 变形$\frac{sinα+cosα}{2sinα-cosα}$+sin2α+sinαcosα+3cos2α=$\frac{sinα+cosα}{2sinα-cosα}$+$\frac{si{n}^{2}α+sinαcosα+3co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα+1}{2tanα-1}$+$\frac{ta{n}^{2}α+tanα+3}{ta{n}^{2}α+1}$,代入即可得出.

解答 解:∵tanα=7,
∴$\frac{sinα+cosα}{2sinα-cosα}$+sin2α+sinαcosα+3cos2α
=$\frac{sinα+cosα}{2sinα-cosα}$+$\frac{si{n}^{2}α+sinαcosα+3co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{tanα+1}{2tanα-1}$+$\frac{ta{n}^{2}α+tanα+3}{ta{n}^{2}α+1}$
=$\frac{7+1}{2×7-1}$+$\frac{{7}^{2}+7+3}{{7}^{2}+1}$
=$\frac{1167}{650}$.

点评 本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.△ABC的顶点B,C的坐标分别为(0,0),(4,0),AB边上的中线的长为3,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在x轴上有一定点A(a,0)及一异于点A的动点A′,在y轴上有一定点B(0,b)及一异于点B的动点B′(ab≠0),且A′B′∥AB.求证:直线A′B与AB′的交点在一条确定的直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求直线x+y-3=0关于点A(2,3)的对称直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设点P(x,y)为圆x2+y2=1上任-点.求下列两个式子的取值范围.
(1)$\frac{y-2}{x+1}$;
(2)x2+y2-2x+6y+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率e=$\frac{\sqrt{2}}{2}$,过C(-1,0)点且斜率为1的直线1与椭圆交于P、Q两点,满足$\overrightarrow{PC}$=3$\overrightarrow{CQ}$,
(I)求该椭圆方程;
(Ⅱ)若直线m过点(1,0)且与椭圆交于A、B两点.求△ABC内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a>1,若函数f(x)=logax-ax有零点,则a的取值范围是(  )
A.(1,e]B.(1,$\sqrt{e}$]C.(1,${e}^{\frac{1}{e}}$]D.(1,${e}^{\sqrt{e}-1}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=(x-a)(x-b)(x-c)的导函数为f′(x),其中a,b.c是互不相等的常数,则f′(a)+f′(b)+f′(c)的值(  )
A.大于0B.小于0C.等于0D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知图象连续不断的函数f(x)在区间(1,2)内有一个零点x0,若用二分法求x0的近似值(精确度0.1),则需要将区间等分的次数为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案