【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列为或.
(1)当时,试求满足条件的数列的个数;
(2)当,求所有满足条件的数列的个数.
【答案】(1)4;(2).
【解析】
(1)分别假设,和,根据已知关系式可求得,从而得到结果;
(2)①当时,可确定满足条件的数列只有个;②当时,可知以后的各项是唯一确定的,根据之前的满足条件的数列的个数为可整理得到,由等比数列通项公式可求得,由此可确定结果.
(1)若,则,故,则;
若,则,,故,则;
若,则,或,;
当时,满足条件的数列为;;;;
故满足条件的的个数为;
(2)设满足条件的数列的个数为,显然,,,
不等式中取,则有,即,
①当时,则,同理,...,,满足条件的数列只有个;
②当,则,同理,...,,即以后的各项是唯一确定的,又之前的满足条件的数列的个数为,
当时,(*),
当时,,代入(*)式得到,且满足,
对任意,都有成立,又,;
综上,满足条件的数列的个数为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点为和,过的直线交于,两点,过作与轴垂直的直线交直线于点.设,已知当时,.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:无论如何变化,直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为(为常数,且),直线与曲线交于两点.
(1)若,求实数的值;
(2)若点的直角坐标为,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某大型厂区有三个值班室,值班室在值班室的正北方向千米处,值班室在值班室的正东方向千米处.
(1)保安甲沿从值班室出发行至点处,此时,求的距离;
(2)保安甲沿从值班室出发前往值班室,保安乙沿从值班室出发前往值班室,甲乙同时出发,甲的速度为千米/小时,乙的速度为千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为千米(含千米),试问有多长时间两人不能通话?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.
(1)求的值及该圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A、B两种品牌各三种车型2017年7月的销量环比(与2017年6月比较)增长率如下表:
A品牌车型 | A1 | A2 | A3 | ||||
环比增长率 | -7.29% | 10.47% | 14.70% | ||||
B品牌车型 | B1 | B2 | B3 | ||||
环比增长率 | -8.49% | -28.06% | 13.25% | ||||
根据此表中的数据,有如下关于7月份销量的四个结论:①A1车型销量比B1车型销量多;
②A品牌三种车型总销量环比增长率可能大于14.70%;
③B品牌三款车型总销量环比增长率可能为正;
④A品牌三种车型总销量环比增长率可能小于B品牌三种车型总销量环比增长率.
其中正确结论的个数是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com