精英家教网 > 高中数学 > 题目详情

【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列

1)当时,试求满足条件的数列的个数;

2)当,求所有满足条件的数列的个数.

【答案】14;(2

【解析】

1)分别假设,根据已知关系式可求得,从而得到结果;

2)①当时,可确定满足条件的数列只有个;②当时,可知以后的各项是唯一确定的,根据之前的满足条件的数列的个数为可整理得到,由等比数列通项公式可求得,由此可确定结果.

1)若,则,故,则

,则,故,则

,则

时,满足条件的数列

故满足条件的的个数为

2)设满足条件的数列的个数为,显然

不等式中取,则有,即

①当时,则,同理,...,,满足条件的数列只有个;

②当,则,同理,...,,即以后的各项是唯一确定的,又之前的满足条件的数列的个数为

时,*),

时,,代入(*)式得到,且满足

对任意,都有成立,又

综上,满足条件的数列的个数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点为,过的直线交两点,过作与轴垂直的直线交直线于点.设,已知当时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:无论如何变化,直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为为常数,且),直线与曲线交于两点.

1)若,求实数的值;

2)若点的直角坐标为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若存在两个极值点,且关于的方程恰有三个实数根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某大型厂区有三个值班室,值班室在值班室的正北方向千米处,值班室在值班室的正东方向千米处.

1)保安甲沿从值班室出发行至点处,此时,求的距离;

2)保安甲沿从值班室出发前往值班室,保安乙沿从值班室出发前往值班室,甲乙同时出发,甲的速度为千米/小时,乙的速度为千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为千米(含千米),试问有多长时间两人不能通话?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.

1)求的值及该圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的极值点,求a的值及的单调区间;

2)若对任意,不等式成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(是自然对数的底数)

1)求的单调递减区间;

2)记,若,试讨论上的零点个数.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两种品牌各三种车型20177月的销量环比(与20176月比较)增长率如下表:

A品牌车型

A1

A2

A3

环比增长率

-7.29%

10.47%

14.70%

B品牌车型

B1

B2

B3

环比增长率

-8.49%

-28.06%

13.25%

根据此表中的数据,有如下关于7月份销量的四个结论:①A1车型销量比B1车型销量多;

②A品牌三种车型总销量环比增长率可能大于14.70%;

③B品牌三款车型总销量环比增长率可能为正;

④A品牌三种车型总销量环比增长率可能小于B品牌三种车型总销量环比增长率.

其中正确结论的个数是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案