精英家教网 > 高中数学 > 题目详情

已知双曲线数学公式的离心率数学公式,2].双曲线的两条渐近线构成的角中,以实轴为角平分线的角记为θ,则θ的取值范围是


  1. A.
    数学公式数学公式
  2. B.
    数学公式数学公式
  3. C.
    数学公式数学公式
  4. D.
    数学公式,π]
C
分析:利用离心率的范围进而求得a和c不等式关系,进而利用a,b和c的关系求得a和b的不等式关系,进而求得渐近线斜率k的范围,利用
k=tan确定tan的范围,进而确定θ的范围.
解答:根据定义e==
,2].
b≤a≤b
而渐近线的斜率k= 所以1≤k≤
所以45°≤≤60°
所以 90°≤θ≤120°,即
故选C
点评:本题主要考查了双曲线的简单性质.考查了学生对平面解析几何知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(  )
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率等于2,且与椭圆
x2
25
+
y2
9
=1有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率等于2,且与椭圆
x2
25
+
y2
9
=1
有相同的焦点,
(1)求椭圆的离心率;   
(2)求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=12
3
.该双曲线的标准方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

同步练习册答案
关 闭