精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积S= accosB.
(1)求角B的大小;
(2)若a=2 ,点D在AB的延长线上,且AD=3,cos∠ADC= ,求b的值.

【答案】
(1)解:∵S= accosB= acsinB,

∴tanB=

∴B=


(2)解:如图,

∵B= .∴∠CBD=

∵cos∠ADC= ,∴sin∠ADC= =

∴在△BCD中,由正弦定理 ,可得: ,解得:CD=9,

∴在△ADC中,由余弦定理可得:b2=AD2+CD2﹣2ADCDcos∠ADC=9+81﹣2× =54.

∴b=3


【解析】(1)由已知利用三角形面积公式,同角三角函数基本关系式可求tanB= ,由特殊角的三角函数值即可得解B的值.(2)由已知可求∠CBD= ,sin∠ADC= ,由正弦定理解得CD,进而在△ADC中,由余弦定理可得b的值.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,过椭圆 右焦点的直线 交椭圆C于M,N两点,P为M,N的中点,且直线OP的斜率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设另一直线l与椭圆C交于A,B两点,原点O到直线l的距离为 ,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C1 =1(a>b>0)的离心率为 ,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.
(Ⅰ)求C1 , C2的方程;
(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是S1 , S2 . 问:是否存在直线l,使得 = ?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岸处发现北偏东方向,距海里的处有一艘走私船.处北偏西方向,距海里的处的我方缉私船奉命以海里小时的速度追截走私船,此时走私船正以海里小时的速度从处向北偏东方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),l: (t为参数)
(1)求曲线C的普通方程,l的直角坐标方程
(2)设l与C交于M,N两点,点P(﹣2,0),若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623——1662)是在1654年发现这一规律的,比杨辉要迟年,比贾宪迟年。如图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就。如图所示,在杨辉三角中,从1开始箭头所指的数组成一个锯齿形数列:,则此数列前项和为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.
(Ⅰ)求角B的大小;
(Ⅱ)求 sinA+sin(C﹣ )的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知曲线C1的参数方程为 ,(α为参数,且α∈[0,π]),曲线C2的极坐标方程为ρ=﹣2sinθ.
(Ⅰ)求C1的极坐标方程与C2的直角坐标方程;
(Ⅱ)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM||PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】体积为 的球有一个内接正三棱锥P﹣ABC,PQ是球的直径,∠APQ=60°,则三棱锥P﹣ABC的体积为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案