精英家教网 > 高中数学 > 题目详情
1.若a,b,c∈(0,+∞),且a+b+c=2,求证:$\sqrt{a+1}$+$\sqrt{b+1}$+$\sqrt{c+1}$<4.

分析 根据三维形式的柯西不等式便可得到$[(\sqrt{a+1})^{2}+(\sqrt{b+1})^{2}+(\sqrt{c+1})^{2}][{1}^{2}+{1}^{2}+{1}^{2}]$$≥(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1})^{2}$,从而便可得到$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}≤\sqrt{15}$,并且可知当a=b=c=$\frac{2}{3}$时取“=”,从而便可证出$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}<4$.

解答 证明:根据柯西不等式:
$[(\sqrt{a+1})^{2}+(\sqrt{b+1})^{2}+(\sqrt{c+1})^{2}][{1}^{2}+{1}^{2}+{1}^{2}]$$≥(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1})^{2}$;
左边=3(a+b+c+3)=15;
∴$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}≤\sqrt{15}$;
当且仅当$\frac{\sqrt{a+1}}{1}=\frac{\sqrt{b+1}}{1}=\frac{\sqrt{c+1}}{1}$,即a=b=c=$\frac{2}{3}$时取“=”;
∴$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}≤\sqrt{15}<\sqrt{16}$;
即$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}<4$.

点评 考查三维形式的柯西不等式公式:$({{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2})({{b}_{1}}^{2}+{{b}_{2}}^{2}+{{b}_{3}}^{2})≥$$({a}_{1}{b}_{1}+{a}_{2}{b}_{2}+{a}_{3}{b}_{3})^{2}$,并且清楚等号成立的条件,放缩法在不等式证明中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.对于函数f(x)=log${\;}_{2}^{2}$x-a•log2x2,x∈[1,4],a∈R.
(1)求函数f(x)的最小值g(a);
(2)是否存在实数m、n,同时满足以下条件:①m>n≥0;②当函数g(a)的定义域为[n,m]时,值域为[-m,-n],若存在,求出所有满足条件的m、n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.当点(-6,4)到直线l:(m-2)x-y+2m+2=0的距离最大时m的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱锥P-ABC中,PA⊥平面ABC,底面ABC为边长等于3的正三角形,D、M为AB、PB中点,且△PAM为正三角形.
(1)求证:平面DMC⊥平面PAB;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是等比数列,a3=4,且a3是a2+4与a4+14的等差中项;数列{bn}是等差数列,b2=16,其前n项和Tn满足Tn=nλ•bn+1(λ为常数,且λ≠1).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式及λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知($\sqrt{x}$+$\frac{a}{\root{3}{x}}$)5的展开式中的常数项为80,则x${\;}^{\frac{5}{6}}$的系数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某程序框图如图所示,则当输入x=1,y=4时,输出的y的值为(  )
A.6B.9C.7D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆(x-a)2+y2=4截直线y=x-4所得的弦的长度为$2\sqrt{2}$,则a=2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,-2),且m$\overrightarrow{a}$+n$\overrightarrow{b}$=(5,-5)(m,n∈R),则m-n的值为-2.

查看答案和解析>>

同步练习册答案