精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的一个焦点为,且椭圆过点为坐标原点,

1)求椭圆的标准方程;

2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,写出该圆的方程,并求的最大值,若不存在说明理由.

【答案】1;(2)存在.

【解析】

1)根据,且,解得答案.

2)设切线方程为,根据垂直得到,故,得到,考虑和斜率不存在三种情况,分别计算得到答案.

1)根据题意:,且,解得,故标准方程为:.

2)假设存在圆满足,当斜率存在时,设切线方程为.

,故.

,即.

.

,即,故,即.

,故,故.

当直线斜率不存在时,根据对称性不妨取

满足.

综上所述:存在使题目条件成立.

.

时,

时,,当,即时等号成立;

当斜率不存在时,易知

综上所述:的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为

(Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;

(Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖,又称十二属相,中国古人拿十二种动物来配十二地支,组成子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪十二属相。现有十二生肖吉祥物各一件,甲、乙、丙三位同学一次随机抽取一件作为礼物,甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,则这三位同学抽取的礼物都喜欢的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上存在单调增区间,求实数的取值范围;

2)若,证明:对于,总有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:

BAC60°;

三棱锥DABC是正三棱锥;

平面ADC的法向量和平面ABC的法向量互相垂直.

其中正确结论的序号是   .(请把正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业者计划在某旅游景区附近租赁一套农房发展成特色农家乐,为了确定未来发展方向此创业者对该景区附近五家农家乐跟踪调查了100天,这五家农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:/)t为入住天数(单位:),以频率作为各自的入住率,收费标准x入住率”y的散点图如图

x

100

150

200

300

450

t

90

65

45

30

20

(1)若从以上五家农家乐中随机抽取两家深人调查,记入住率超过0.6的农家乐的个数,求的概率分布列

(2)zlnx,由散点图判断哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a的结果精确到0.1)

(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L100×入住率×收费标准x)

参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)讨论函数的单调性;

(2)当时,方程在区间内有唯一实数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案