精英家教网 > 高中数学 > 题目详情
已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1

 
(1)证明见解析;(2)证明见解析.

试题分析:
解题思路:(1)构造三角形,利用中位线证明线线平行,再利用线面平行的判定定理证明线面平行;
(2)由线面垂直得到线线垂直,再证明线面垂直,进而证明面面垂直.
规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键.
试题解析:(1)延长C1F交CB的延长线于点N,连接AN.
∵F是BB1的中点,∴F为C!N的中点,B为CN的中点,
∴又因为M为线段AC的中点,∴MF∥AN,
平面ABCD,平面ABCD,
∥平面ABCD.
连接BD,由题知平面AB-CD,又平面ABCD,.
四边形ABCD为菱形,.
,平面,平面,平面.
在四边形DANB中,DA∥BN,且DA=BN,,四边形DANB为平行四边形,∥BD,平面。又平面平面⊥平面.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,平面平面,且四边形为矩形,四边形为直角梯形,
(1)求证平面;(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点.

(1)证明:面
(2)求所成的角的余弦值;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,底面为梯形,,且.(10分)

(1)求证:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体是由底面为的长方体被截面所截而得到的,其中
(1)求
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大小;
(2)求直线BD与EF所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2012·安徽高考]设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知空间三点
(1)求
(2)求以AB,AC为边的平行四边形的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若向量,且的夹角余弦为,则等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案