椭圆C以抛物线的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若分别为椭圆的左右焦点,求的角平分线所在直线的方程.
(Ⅰ);(II)y=2x-1。
【解析】
试题分析:(Ⅰ)设椭圆C的方程为
易知抛物线的焦点为(2,0),所以椭圆的左右焦点分别为(-2,0),(2,0)
根据椭圆的定义
所以,所以
所以椭圆C的方程为
(II)由(Ⅰ)知(-2,0),(2,0)
所以直线的方程为即,直线的方程为
所以的角平分线所在直线的斜率为正数。
设(x,y)为的角平分线上任意一点,则有
由斜率为正数,整理得y=2x-1,这就是所求的角平分线所在直线的方程.
考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,抛物线的几何性质。
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)出发利用角的平分线的性质,求得直线方程。
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2010-2011学年甘肃省高三第三次模拟考试理科数学 题型:选择题
已知椭圆C:,以抛物线的焦点为椭圆的一个焦点,且短轴一个端点与两个焦点可组成一个等边三角形,则椭圆C的离心率为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省福州市高三第五次质量检查数学文卷 题型:解答题
(本小题满分12分)
曲线是以原点为中心,以抛物线的焦点F为右焦点,离心率为的椭圆,且过F的直线交椭圆C于P、Q两点,M是中点.
(1)求椭圆C的方程;
(2)当时,求直线PQ的方程.
查看答案和解析>>
科目:高中数学 来源:2010年五校联合教学调研数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com