精英家教网 > 高中数学 > 题目详情
已知sin2a+sina+b=0方程有解,求b的取值范围.
考点:函数的零点与方程根的关系
专题:计算题,函数的性质及应用,三角函数的图像与性质
分析:方程sin2α+sinα+b=0即为-b=sin2α+sinα有解,运用配方和正弦函数的值域,结合二次函数的值域的求法,即可得到.
解答: 解:方程sin2α+sinα+b=0即为
-b=sin2α+sinα=(sinα+
1
2
2-
1
4

由于-1≤sinα≤1,
则sinα=-
1
2
∈[-1,1],sin2α+sinα取得最小值-
1
4

当sinα=-1时,sin2α+sinα=0,当sinα=1时,sin2α+sinα=2,
即有当sinα=1时,sin2α+sinα取得最大值2.
则有-
1
4
≤-b≤2,解得-2≤b≤
1
4

故b的取值范围为[-2,
1
4
].
点评:本题考查正弦函数的值域的运用,考查二次函数的值域,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x
,则下列说法正确的是(  )
A、f(x)是增函数
B、f(x)是减函数
C、f(x)是奇函数
D、f(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

如果M={1,2,3},N={3,5},则M∩N=(  )
A、{1,2,3,5}
B、{1,2,3}
C、{3,5}
D、{3}

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,点P是第一象限内双曲线上的点,若直线PA、PB的倾斜角分别为α,β,且β=kα(k>1),那么α的值是(  )
A、
π
2k-1
B、
π
2k
C、
π
2k+1
D、
π
2k+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x-1)是偶函数(x∈R且x≠0)且在(0,+∞)上单调递增,f(-2)=0,则关于x的不等式:(x+1)f(x)>0的解集是(  )
A、(-∞,-2)∪(-1,+∞)
B、(-2,-1)∪(0,+∞)
C、(-2,0)
D、(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD和矩形ADEF,平面ABCD⊥平面ADEF,AD=2AB,P为BC的中点,M在AF上且AM=2MF,DP交AC与N点.
(1)求证:MN∥平面BCEF;
(2)若四边形ABCD为矩形,且AF=AB,求DM与平面MAP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(
1
4
x+(
1
2
x-1,x∈[0,+∞)的值域为(  )
A、(-
5
4
,1]
B、[-
5
4
,1]
C、(-1,1]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x2([x]+
3
2
)+x,x∈[0,2),(其中[x]表示不大于x的最大整数,如[0.1]=0,[-0.2]=-1),g(x)=kx(k≠0),若函数f(x)的图象与函数g(x)的图象有两个不同的交点,则k的取值范围是(  )
A、(-
9
16
,-
1
2
]∪(
7
16
1
2
]
B、(-
1
2
,0)∪[
1
2
,1]
C、(-
1
2
,0)∪[
1
2
,1]∪{-
9
16
7
16
}
D、(-
1
2
,0)∪[
1
2
,1)∪{-
9
16
7
16
}

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,且(a+i)2i为正实数,则a=(  )
A、1B、0C、-1D、0或-1

查看答案和解析>>

同步练习册答案