精英家教网 > 高中数学 > 题目详情

【题目】已知一个三棱锥的三视图如图所示,其中俯视图是顶角为的等腰三角形,侧视图为直

角三角形,则该三棱锥的表面积为____,该三棱锥的外接球体积为____

【答案】 . .

【解析】分析:(1)根据三视图画出几何体的直观图,判断三视图的数据所对应的量,求出各侧面的高,代入公式计算即可.(2)建立适当的坐标系,写出各个点的坐标和设出球心的坐标,根据各个点到球心的距离相等,求出球心的坐标和点的半径,求出体积.

详解:由三视图得几何体的直观图是:

∴S=2××2×2+×2×+×2=4+

故答案是4+

以D为原点,DB为x轴,DA为y轴,建立空间直角坐标系,

则D(0,0,0),A(0,0,2),B(2,0,0),C(﹣1,,0)

∵(x﹣2)2+y2+z2=x2+y2+z2,①

x2+y2+(z﹣2)2=x2+y2+z2,②

,③

∴x=1,y=,z=1,

球心的坐标是(1,,1),

球的半径是.

球的体积是

故答案为:4+,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是其左、右焦点,且过点.

(1)求椭圆的标准方程;

(2)求的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在定义域内存在区间[ab],使[ab]上的值域是[2a2b],那么称倍增函数

I)判断=是否为倍增函数,并说明理由;

II)证明:函数=倍增函数

III)若函数=ln)是倍增函数,写出实数m的取值范围。(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆具有如下性质:若是椭圆上关于原点对称的两个点,点是椭圆上的任意一点,当直线的斜率都存在,并记为时,则之积是与点位置无关的定值.试写出双曲线具有的类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数(常数).

(1)若,求函数的单调区间;

(2)若恒成立,求实数的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知汽车站每天上午之间都恰有一辆长途汽车经过,但是长途车到站的时间是随机的,且每辆车的到站时间是相互独立的,汽车到站后即停即走,据统计汽车到站规律为:

现有一位旅客在到达汽车站,问:

(1)该旅客候车时间不超过20分钟的概率;

(2)记该旅客的候车时间为,求的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为1的直线与椭圆交于两点,且线段的中点为,椭圆的上顶点为.

(1)求椭圆的离心率;

(2)设直线与椭圆交于两点,若直线的斜率之和为2,证明:过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值构成的集合是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案