精英家教网 > 高中数学 > 题目详情
12、定义在R上的函数y=f(x)是增函数,且为奇函数,若实数s,t满足不等式f(s2-2s)≥-f(2t-t2),则当1≤s≤4时,3t+s的取值范围是(  )
分析:首先由奇函数定义与增函数性质得出s与t的关系式,然后利用函数图象进一步明确s与t的关系及s、t的范围,最后通过求3t+s的最大值和最小值进而解决3t+s的取值范围.
解答:解:因为f(x)是奇函数,所以-f(2t-t2)=f(t2-2t)
则f(s2-2s)≥-f(2t-t2)可变形为f(s2-2s)≥f(t2-2t)
又因为f(x)是增函数,所以s2-2s≥t2-2t
根据y=x2-2x的图象
可见,当1≤s≤4时,-2≤t≤4,又s2-2s≥t2-2t
所以当s=t=4时,3t+s取得最大值16;当t=-2,s=4时,3t+s取得最小值-2
所以3s+t的取值范围是-2≤3t+s≤16
故选B.
点评:本题综合考查函数的奇偶性、单调性知识及数形结合方法;同时考查由最大值、最小值求取值范围的策略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、定义在R上的函数y=f(x)满足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,则f(508)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①“a>b”是“2a>2b”成立的充要条件;
②“a=b”是“lga=lgb”成立的充分不必要条件;
③函数f(x)=ax2+bx(x∈R)为奇函数的充要条件是“a=0”
④定义在R上的函数y=f(x)是偶函数的必要条件是
f(-x)f(x)
=1”

其中真命题的序号是
①③
①③
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)=
-1
-1

查看答案和解析>>

同步练习册答案