精英家教网 > 高中数学 > 题目详情
12.用反证法证明命题:“若关于x的方程x2-2x+a=0有两个不相等的实数根,则a<1”时,应假设(  )
A.a≥1
B.关于x的方程x2-2x+a=0无实数根
C.a>1
D.关于x的方程x2-2x+a=0有两个相等的实数根

分析 本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“a<1”写出否定即可.

解答 解:根据反证法的步骤,假设是对原命题结论的否定
“a<1”的否定“a≥1”.
即假设正确的是:a≥1.
故选:A.

点评 一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知an=3n,bn=3n,n∈N*,对于每一个k∈N*,在ak与ak+1之间插入bk个3得到一个数列{cn}.设Tn是数列{cn}的前n项和,则所有满足Tm=3cm+1的正整数m的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+2x-lnx(a∈R).
(Ⅰ)若a=4,求函数f(x)的极值;
(Ⅱ)若f′(x)在区间(0,1)内有唯一的零点x0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:?x∈[0,3],a≥-x2+2x-$\frac{2}{3}$,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-mx+2的两个零点为x=1和x=n.
(1)求m,n的值;
(2)若函数g(x)=x2-ax+2(a∈R)在(-∞,1]上单调递减,解关于x的不等式loga(nx+m-2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若幂函数f(x)的图象过点(3,$\frac{1}{9}$),则f(x)=_x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列事件是随机事件的是(  )
(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引
(3)在标准大气压下,水在1℃时结冰         (4)任意掷一枚骰子朝上的点数是偶数.
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(0<a<b)的半焦距为c,(a,0),(0,b)为直线l上两点,已知原点到直线l的距离为$\frac{\sqrt{3}}{4}$c,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$或2C.2或$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式$\frac{2x-3}{x+1}<0$的解集为(-1,$\frac{3}{2}$).

查看答案和解析>>

同步练习册答案