精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断
OM
OL
是否为定值?并证明你的结论.
分析:(1)圆心C(m,0),(-1<m<1),⊙C的半径为:r=
1-m2
,从而⊙C的方程为(x-m)2+y2=1-m2,由此能求出椭圆D的标准方程.
(2)当b=1时,椭圆D的方程为
x2
2
+y2=1
,设椭圆D上任意一点S(x1,y1),则
x12
2
+y12=1
y12=1-
x12
2
,由SC2=(x1-m) 2+y12=
1
2
(x1-2m)2+1-m2
≥1-m2=r2,所以SC≥r.由此得到椭圆D上的任意一点都不存在⊙C的内部.
(3)设点P(x1,y1),Q(x2,y2),由题意,得N(x1,-y1),x1≠x2,y1≠±y2,从而直线PQ的方程为(y2-y1)x-(x2-x1)y+x2y1-x1y2=0,令y=0,得xM=
x1y2-x2y1 
y2-y1
,直线QN的方程为(y2+y1)x-(x2-x1)y-x1y2-x2y1=0,令y=0,得xL=
x2y1+x1y2
y2+y1
.由点P,Q在椭圆D上,能够证明
OM
OL
=xM•xL=b2+1为定值.
解答:解:(1)圆心C(m,0),(-1<m<1),
则⊙C的半径为:r=
1-m2

从而⊙C的方程为(x-m)2+y2=1-m2
椭圆D的标准方程为:
x2
b2+1
+
y2
b2
=1

(2)当b=1时,椭圆D的方程为
x2
2
+y2=1

设椭圆D上任意一点S(x1,y1),
x12
2
+y12=1
y12=1-
x12
2

SC2=(x1-m) 2+y12
=(x1-m) 2+1-
x12
2

=
1
2
(x1-2m)2+1-m2

≥1-m2=r2
所以SC≥r.
从而椭圆D上的任意一点都不存在⊙C的内部.
(3)
OM
OL
=b2+1为定值.
证明:设点P(x1,y1),Q(x2,y2),
则由题意,得N(x1,-y1),x1≠x2,y1≠±y2
从而直线PQ的方程为(y2-y1)x-(x2-x1)y+x2y1-x1y2=0,
令y=0,得xM=
x1y2-x2y1 
y2-y1

∵直线QN的方程为(y2+y1)x-(x2-x1)y-x1y2-x2y1=0,
令y=0,得xL=
x2y1+x1y2
y2+y1

∵点P,Q在椭圆D上,
x12
b2+1
+
y12
b2
=1
x22
b2+1
+
y22
b2
=1

x12=b2+1-
b2+1
b2
y12
x22=b2+1-
b2+1
b2
y22

∴xM•xL=
(b2+1-
b2+1
b2
y12)y22-(b2+1-
b2+1
b2
y22  )y12
y22-y12

=
(b2+1)(y22-y12)
y22-y12
=b2+1.
OM
OL
=xM•xL=b2+1为定值.
点评:本题考查直线与圆锥曲线的综合题,考查运算求解能力和推理论证能力,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案