精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;(6分)
(2)求证:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)
(1)直线PC与平面PAD所成角的余弦值. (2)见解析;(3)

试题分析:(1)一点B为坐标原点,以BA为x轴,以BC为y轴,以BP为z轴,建立空间直角坐标至B-xyz,根据条件求出CD,PD,然后求出这两个向量的所成角即为异面直线CD与PA所成的角;
(2)欲证PC∥平面EBD,根据直线与平面平行的判定定理可知只需证PC与平面EBD内一直线平行连接AC交BD于G,连接EG,根据比例关系可知PC∥EG,而EG?平面EBD,PC?平面EBD,满足定理所需条件;
(3)先求平面EBD的法向量与平面ABE的法向量,然后利用向量的夹角公式求出此角的余弦值即二面角A-BE-D的大小的余弦值.
解:(1)建立如图所示的直角坐标系……1分


………………2分
设平面PAD法向量为
,所以 …3分
设直线PC与面PAD所成角为…4分
…………………5分
所以,直线PC与平面PAD所成角的余弦值.……………………6分
(2)连结AC交BD于G,连结EG,
,∴ ……………8分
…………………………9分
…………………………10分
(3)设平面,由
考点:
点评:解决该试题的关键是熟练的运用线面平行的判定定理和二面角概念的理解和求解的运用。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)如图所示,在四棱锥中,平面
平分的中点.

求证:(1)平面
(2)平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是(  )
A.①③    B.②C.②④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线不平行于平面,则下列结论成立的是(   )
A.平面内的所有直线都与直线异面B.平面内不存在与直线平行的直线
C.平面内的直线都与直线相交D.平面内必存在直线与直线垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不同的直线a, b, c及不同的平面α,β,γ,下列命题正确的是(    )
A.若aα,bα,c⊥a, c⊥b 则c⊥α
B.若bα, a//b则 a//α
C.若a⊥α, b⊥α 则a//b
D.若a//α,α∩β=b则a//b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。

(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,ABCD-A1B1C1D1为正方体,下面结论错误的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列命题中的假命题是
A.若B.若
C.若D.若

查看答案和解析>>

同步练习册答案