【题目】某工厂每日生产一种产品吨,每日生产的产品当日销售完毕,日销售额为万元,产品价格随着产量变化而有所变化,经过一段时间的产销,得到了,的一组统计数据如下表:
(1)请判断与中,哪个模型更适合刻画,之间的关系?可从函数增长趋势方面给出简单的理由;
(2)根据你的判断及下面的数据和公式,求出关于的回归方程,并估计当日产量时,日销售额是多少?
,,
,.
线性回归方程中,,.
科目:高中数学 来源: 题型:
【题目】已知函数,其中是自然对数的底数.
(1)若关于的不等式在上恒成立,求实数的取值范围;
(2)已知正数满足:存在,使得成立.试比较与的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,.
(1)当时,判断曲线与曲线的位置关系;
(2)当曲线上有且只有一点到曲线的距离等于时,求曲线上到曲线距离为的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在复数范围内解方程(为虚数单位)
(2)设是虚数,是实数,且
(i)求的值及的实部的取值范围;
(ii)设,求证:为纯虚数;
(iii)在(ii)的条件下求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,平面.
(1)证明:平面;
(2)过点作一平行于平面的截面,画出该截面,说明理由,并求夹在该截面与平面之间的几何体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com