精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2,g(x)=|x-a|.
(1)当a=2时,求不等式f(x)>g(x)的解集;
(2)设a>1,函数h(x)=f(x)g(x),求h(x)在x∈[1,2]上的最小值.

解:(1)∵x2>|x-2|
∴{x|x>1或x<-2}
(2)h(x)=x2|x-a|x∈[1,2]
当1<a≤2 h(x)=x2|x-a|≥0 在x=a时,最小值为0
当a>2 h(x)=ax2-x3 hˊ(x)=3x(-x)
令hˊ(x)=0,得x=0,x=
当x∈(-∞,0)时 hˊ(x)<0
当x∈(,+∞)时 hˊ(x)<0
当x∈(0,)时 hˊ(x)>0
∴当≥2,h(x)的最小值为h(1)=0
当1<<2,h(x)的最小值为h(1)与h(2)中较小者
又h(1)=a-1 h(2)=4a-8
∴当2<a≤ h(x)的最小值为h(2)=4a-8
<a<3 h(x)的最小值为h(1)=a-1
∴h(x)=
分析:(1)分两种情况去绝对值,再利用一元二次不等式的解法来解.
(2)先有a和x的关系找h(x),再对h(x)用导函数的方法求最值.
点评:带绝对值的函数求最值时,一定要根据绝对值中数的正负来去掉绝对值符号再分段利用单调性解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案